Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2023

Supporting Information:

2	Taking a Look at the Surface:
3	μ-XRF Mapping and Fluorine K-edge μ-XANES Spectroscopy of
4	Organofluorinated Compounds in Environmental Samples and
5	Consumer Products
6	Philipp Roesch, ^{a*†} Christian Vogel, ^{a*†} Philipp Wittwer, ^a Thomas Huthwelker, ^b Camelia N.
7	Borca, ^b Thomas Sommerfeld, ^c Stephanie Kluge, ^c Christian Piechotta, ^c Ute Kalbe ^a and Franz-
8	Georg Simon ^a
9 10	^{a.} Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; philipp.roesch@bam.de; christian.vogel@bam.de
11	^{b.} Paul-Scherrer-Institute, Swiss Light Sources, 5232 Villigen PSI, Switzerland
12 13	^{c.} Bundesanstalt f ür Materialforschung und -pr üfung (BAM), Richard-Willst ätter-Stra ße 11, 12489 Berlin, Germany
14	[†] PR and CV share first authorship.
15	
16	Total SI-Figures: 24
17	Total SI-Tables: 6

18 <u>Total SI-Pages:</u> 39

20 Table of Contents

21	Instrumental Methods
22	Fluorine K-edge XANES spectroscopy
23	LC-MS/MS Analysis
24	Fluorine µ-XANES spectra7
25	Element specific X-ray fluorescence maps of investigated samples 11
26	Limitation of detection: Dilution series of PFOS in sand samples
27	Fluorine K-edge XANES Reference spectra
28	Linear combination fitting analysis
29	LC-MS/MS data
30	References
31	

33 Instrumental Methods

34

35 Fluorine K-edge XANES spectroscopy.

36 Fluorine K-edge XANES spectra (bulk and µ-XANES) were collected on the PHOENIX II 37 beamline of the Swiss Light Source (SLS, Villigen, Switzerland). All soil and sewage sludge 38 samples were pressed into small pellets for easier sample preparation prior to the measurements 39 and the experiments were conducted at room temperature under a high vacuum (10^{-6} mbar). The 40 incoming intensity, I_0 , was measured from the total electron yield signal taken from a nickel coated, 41 0.5 mm thick polyester foil. Bulk-XANES spectra were collected from an area of approx. 2 \times 42 3 mm² at the sample over the range 660–780 eV in fluorescence mode, using a silicon drift diode 43 (SDD, manufacturer: Ketek). For μ -XANES, the beam spot size was reduced to $8 \times 15 \,\mu\text{m}^2$ by elliptically bend Kirkpatrick-Baez mirrors. Two-dimensional micro-X-ray fluorescence (µ-XRF) 44 45 elemental maps of 300 x 300 µm² were first collected at 695 eV (above the F K-edge) by raster 46 scanning the sample with respect to the X-ray beam and a step size of 10.0 µm. Some of the maps 47 were repeated after some hours see if a thermal shift of the beam take place. However, no shift 48 was observed. To optimize the discrimination of the various μ -XRF line contributions (C, O and F), the µ-XRF spectra were batch fitted at each map pixel using the PyMca software.¹ Areas with 49 50 varying levels of fluorine fluorescence were then targeted for micro-XANES analysis. To 51 determine the XANES point spectra, from the X-ray fluorescence point spectra, the integrated 52 count rate of the fluorine peak was used without further background subtraction or peak fitting. 53 The collected spectra were normalized, and background corrected using the Athena software from the Demeter 0.9.26 package.² 54

55 Additionally, the fluorine K-edge micro-XANES spectra of each spot were analyzed with linear 56 combination (LC) fitting of the fluorine reference compounds with the Demeter Athena software.³ 57 Therefore, twelve reference data sets of the following fluorine K-edge XANES spectra were 58 preselected and then processed via linear combination: CaF₂, FeF₃·3H₂O, AlF₃·3H₂O, 59 Fluoroapatite, Na2SiF6, NH4F, PFPrA, PFOA, PFOS, K-PFBS, Na-TFMS, PFPD, HFPO-DA, 6:2-60 FTOH, 6:2-FTAc, PTFE, PFA, fluoxetine, tolylfluanid, 4-fluorobenzoic acid. The spectral fitting 61 range was set from -5 to +13 eV of the fluorine K-edge at 690 eV. The maximum number of compounds in the final LC fit was limited to four and the sum of the compounds was forced to add 62 63 up to 100 %. From the resulting LC fits the one with the lowest R-values were chosen (see also 64 Table S1).

65

66 LC-MS/MS Analysis

67 Analyses for soil and sewage sludge samples were performed using an Agilent 1260 HPLC and an 68 AB SCIEX TSQ 6500 as mass selective detector. 7 µL of the samples was injected and separated 69 on a Nucleodur C 18 Pyramid pre-column (8 mm × 3 mm, 3 µm) and a Nucleodur C18 Pyramid 70 column (125 mm \times 2 mm; 3 µm) (both Macherey- Nagel, Düren, Germany) at 35 °C and a flow 71 rate of 0.3 ml/min using the following gradient program using water with 10 mM ammonium 72 acetate solution (eluent A) and methanol (eluent B): the eluent composition of 75 % A and 25 % 73 B at the beginning changed after 9 min to 25 % A and 75 % B. The ion source was operated at 74 425 °C and with an ion spray voltage of 1200 V and all measurements were executed in the 75 multireaction mode (MRM).

All samples were analysed as triplicates. Recovery rates were determined by spiking soil/sludge
 samples with appropriate concentration of all PFAS targets. All LOQs for individual PFAS were

determined by applying the respective regulations according to DIN 38402-51: 2017-05 (see also
Table S2).4

For textile and paper samples, chromatographic separation was achieved using an Agilent
ZORBAX RRHD Eclipse Plus C18 (100 mm × 3 mm, 1.8 μm) column installed on an Agilent
1290 Infinity II UHPLC system consisting of the following modules: Agilent 1290 Infinity II High
Speed Pump (G7120A), Agilent 1290 Infinity II Multisampler with Multiwash Option (G7167B)
and Agilent 1290 Infinity II Multicolumn Thermostat (G7116B).

A gradient elution was performed with 5 mM ammonium acetate in water (mobile phase A) and methanol (mobile phase B) at 0.4 mL/min with a total run time of 17 minutes. To minimize background PFAS contamination, the Agilent PFC-Free HPLC Conversion Kit (part number 5004 0006) and a PFC delay column (part number 5062 8100) for delaying potential per- or polyfluorochemical impurities from the mobile phases was installed on the UHPLC system.

Dynamic MRM (dMRM) analysis was performed using a 6495C LC/TQ with an Agilent Jet
Stream (AJS) ion source operated in negative ionization mode. Data acquisition and processing
were performed using Agilent MassHunter Data LC/MS Acquisition software version 10.0 and
Quantitative Analysis software version 10.2, respectively.

Again, all samples were analysed as triplicates. PFAS target recovery rates were determined by
spiking samples with known PFAS concentrations. LOQs for individual PFAS were determined
by applying DIN 32645 (see also Table S3).5

97 Reference compound calibration was done by applying the isotope dilution calibration method. 98 Linear calibration curves contained up to eight calibration points and ranged from 0.07 - 48.55 ng/g per analyte. The overall weight factor was required to yield R2 > 0.99. Exceeding the

- 100 range of the specified calibration curves was not tolerated and samples had to be diluted and
- 101 remeasured if necessary. All measured blank values were below the limit of detection.

Figure S1: μ -XRF map of fluorine (red) and oxygen (blue) (left; $300 \times 300 \ \mu\text{m}^2$, $10 \ \mu\text{m}$ step, color scale is arbitrary) and corresponding F K-edge micro-XANES spectra of **Soil2** (right). All black spots in μ -XRF map are low in intensity; PFOS = perfluorooctanesulfonic acid; Fluox. = fluoxetine.

110

Figure S2: μ -XRF map of fluorine (red) and oxygen (blue) (left; 300 × 300 μ m², 10 μ m step, color 113

scale is arbitrary) and corresponding F K-edge micro-XANES spectra of SL2 (right). All black 114

115 spots in μ -XRF map are low in intensity; Na-TFMS = sodium trifluormethyl sulfonate; Fluox. = 4-FBA =

- 116 fluoxetine;
- 117 4-flurobenzoic acid.

120 Figure S3: μ -XRF map of fluorine (red) and oxygen (blue) (left; $300 \times 300 \ \mu\text{m}^2$, $10 \ \mu\text{m}$ step, color

scale is arbitrary) and corresponding F K-edge micro-XANES spectra of **SL3** (right). All black spots in μ -XRF map are low in intensity; Fluox. = fluoxetine.

Figure S4: μ -XRF map of fluorine (red), carbon (green) and oxygen (blue) (left) and corresponding F K-edge micro-XANES spectra of **Textile2** (right). All μ -XRF maps 300 × 300 μ m², 10 μ m step, color scale is arbitrary. All black spots in μ -XRF map are low in intensity; Na-TFMS = sodium trifluormethyl sulfonate; 4-FBA = 4-fluorobenzoic acid; HFPO-DA = hexafluoropropylene oxide dimer acid.

130

131

133 Element specific X-ray fluorescence maps of investigated samples

134

Soil1

Figure S5: Separated μ-XRF maps of recorded fluorine (left, red) and oxygen atoms (right, blue) at the surface of Soil1. Respective maxima and minima recorded counts per second (cps) are shown

by color gradients. All μ -XRF maps span 300 × 300 μ m², 10 μ m step, color scale is arbitrary. All black spots in μ -XRF map are considered low in intensity.

Soil2

- 141 at the surface of **Soil2**. Respective maxima and minima recorded counts per second (cps) are shown
- 142 by color gradients. All μ -XRF maps span 300 × 300 μ m², 10 μ m step, color scale is arbitrary. All
- 143 black spots in μ -XRF map are considered low in intensity.

144

at the surface of SL1. Respective maxima and minima recorded counts per second (cps) are shown

- by color gradients. All μ -XRF maps span 300 × 300 μ m², 10 μ m step, color scale is arbitrary. All
- black spots in µ-XRF map are considered low in intensity.

- 151 at the surface of SL2. Respective maxima and minima recorded counts per second (cps) are shown
- 152 by color gradients. All μ -XRF maps span 300 × 300 μ m², 10 μ m step, color scale is arbitrary. All
- 153 black spots in μ -XRF map are considered low in intensity.

155 at the surface of SL3. Respective maxima and minima recorded counts per second (cps) are shown 156

- by color gradients. All μ -XRF maps span 300 × 300 μ m², 10 μ m step, color scale is arbitrary. All 157
- black spots in μ -XRF map are considered low in intensity. 158

160 **Figure S10**: Separated μ -XRF maps of recorded fluorine (upper left, red), carbon (lower left, 161 green) and oxygen atoms (right, blue) at the surface of **Paper1**. Respective maxima and minima 162 recorded counts per second (cps) are shown by color gradients. All μ -XRF maps span 163 $300 \times 300 \ \mu\text{m}^2$, 10 μm step, color scale is arbitrary. All black spots in μ -XRF map are considered 164 low in intensity.

Textile1

Maximum: 3352.37 cps

Figure S11: Separated μ -XRF maps of recorded fluorine (upper left, red), carbon (lower left, green) and oxygen atoms (right, blue) at the surface of **Textile1**. Respective maxima and minima recorded counts per second (cps) are shown by color gradients. All μ -XRF maps span 300 × 300 μ m², 10 μ m step, color scale is arbitrary. All black spots in μ -XRF map are considered low in intensity.

Minimum: 437.6 cps
 Maximum: 4251.2 cps

Figure S12: Separated μ -XRF maps of recorded fluorine (upper left, red), carbon (lower left,

- green) and oxygen atoms (right, blue) at the surface of Textile2. Respective maxima and minima
 recorded counts per second (cps) are shown by color gradients. All μ-XRF maps span
- $300 \times 300 \ \mu\text{m}^2$, 10 μm step, color scale is arbitrary. All black spots in μ -XRF map are considered
- 174 low in intensity.

175

Maximum: 757.5 cps

176 **Figure S13**: Separated μ -XRF maps of recorded fluorine (upper left, red), carbon (lower left, 177 green) and oxygen atoms (right, blue) at the surface of **Sheet1**. Respective maxima and minima 178 recorded counts per second (cps) are shown by color gradients. All μ -XRF maps span 179 $300 \times 300 \ \mu\text{m}^2$, 10 μm step, color scale is arbitrary. All black spots in μ -XRF map are considered 180 low in intensity.

Fabric_blank

Maximum: 2879.9 cps

Figure S15: Separated μ -XRF maps of recorded fluorine (upper left, red), carbon (lower left, green) and oxygen atoms (right, blue) at the surface of **Fabric1**. Respective maxima and minima recorded counts per second (cps) are shown by color gradients. All μ -XRF maps span $300 \times 300 \ \mu\text{m}^2$, 10 μm step, color scale is arbitrary. All black spots in μ -XRF map are considered low in intensity.

Figure S16: Separated μ -XRF maps of recorded fluorine (upper left, red), carbon (lower left, green) and oxygen atoms (right, blue) at the surface of **Fabric2**. Respective maxima and minima recorded counts per second (cps) are shown by color gradients. All μ -XRF maps span $300 \times 300 \ \mu\text{m}^2$, 10 μm step, color scale is arbitrary. All black spots in μ -XRF map are considered low in intensity.

201 Limitation of detection: Dilution series of PFOS in sand samples

Figure S17: Normalized fluorine specific μ -XRF maps of a) 100000 μ g/kg based on fluorine amount of PFOS in quartz sand, b) 10000 μ g/kg F of PFOS in quartz sand, c) 1000 μ g/kg F of PFOS in quartz sand and d) 100 μ g/kg F of PFOS in quartz sand. All μ -XRF maps were recorded by 10 μ m step and span 300 × 300 μ m². The color scale for all maps is normalized from 0.3 cps (minimum, black) to 1177 counts per second (maximum, red).

207 Fluorine K-edge XANES Reference spectra

208

209

210 Figure S18: Fluorine K-edge XANES spectra of various inorganic compounds.

Figure S19: Fluorine K-edge XANES spectra of Perfluoropentadecane (PFPD) and various PFCAs.

Figure S20: Fluorine K-edge XANES spectra of various PFSAs.

Figure S21: Fluorine K-edge XANES spectra of various fluorinated alcohols, FTOHs andPFOPA.

225 Figure S22: Fluorine K-edge XANES spectra of various fluorotelomersilanes (FT-TEOS), fluorotelomeracrylates (FTAc) and fluorotelomermethacrylates (FTMAc).

Figure S23: Fluorine K-edge XANES spectra of various fluoropolymers (top) and low fluorinated compounds (bottom).

234 Linear combination fitting analysis

235	Table S1:	Best	linear	combination	(LC)	fits	of the	e collected	fluorine	K-edge	micro-2	XANES
236	spectra.											

sample	best LCF-fit	R-factor	reduced x 2
Soil1-P1	53% CaF2 + 40% AlF3 + 7% TFMS	0.016	0.004
Soil1-P2	38% CaF2 + 40% A1F3 + 22% Fluoxetine	0.024	0.009
Soil1-P3	31% FeF3 + 25% AlF3 + 44% Fluoxetine	0.025	0.007
Soil1-P4	64% AlF3 + 36% Fluoxetine	0.050	0.018
Soil1-P5	46% AlF3 + 43% Fluoxetine + 11% FeF3	0.009	0.003
Soil1-P6	46% TFMS + 32% A1F3 + 22% FeF3	0.017	0.004
Soil2-P1	72 % Na2SiF6 + 1,8 % PFOS + 26,3 % Fluoxetin	0.039	0.017
Soil2-P2	77,6 % Na2SiF6 + 0,4 % MgF2 + 22 % Fluoxetin	0.035	0.017
Soil2-P3	83,9 % Na2SiF6 + 16 % PFOS + 0,1 % TFMS	0.023	0.008
Soil2-P4	86,5 % Na2SiF6 + 13,5 % PFOS	0.052	0.019
Soil2-P5	57,1 % Na2SiF6 + 33,6 % PFOS + 9,3 % Fluoxetin	0.019	0.006
Soil2-P6	100 % Na2SiF6	0.055	0.017
SL1-P1	42% Fluorapatit + 41% AlF3 +17% Fluoxetin	0.006	0.002
SL1-P2	50% Fluoxetin + 47% AlF3 + 3% 4-FB	0.013	0.004
SL1-P3	69% Fluoxetin +29% AlF3+ 3% 4-FB	0.038	0.018
SL1-P4	68% AlF3 + 23% Fluoxetin + 9% Tolylfluanid	0.006	0.001
SL1-P5	40% Fluoxetin + 25% AlF3 + 25% Fluoroapatite	0.032	0.012
SL2-P1	45% AlF3 + 45,5% TFMS + 9,5% FeF3	0.012	0.003
SL2-P2	40% Fluoroapatite + 32 % AlF3 + 28% TFMS	0.053	0.014
SL2-P3	55% Fluorapatite + 40% AlF3 + 5% 4FB	0.022	0.006
SL3-P1	3,1 % 4-FBA + 43% Fluoxetin + 53,9 % AlF3	0.025	0.011
SL3-P2	37,9 % Fluoxetin + 54,8 % AlF3 + 7,3 % FeF3	0.031	0.010
SL3-P3	20,9% + Fluoxetin + 7,6 % NH4F + 71,5 %AlF3	0.035	0.011
	39,6 % AlF3+ 18,9 % Fluoexetin + 40,5 % CaF2 + 0,9 %	0.000	0.00 -
SL3-P4	NaTFMS	0.023	0.007
SL3-P5	73,3 % AIF3+ 18,3 % Fluoexetin + 4,5 % CaF2 + 3,9 % 4-FBA	0.030	0.008
Paper1-P1	74.0 % PTFE + 26.0 % 6:2FTOH	0.029	0.010
Textile1-P1	58.4 % PFPrA + 30.5 % NaTFMS + 11.1 PTFE	0.020	0.010
Textile1-P2	91.3 % PFPrA + 8.7 % NaTFMS	0.035	0.025
Textile1-P3	65.0 % NaTFMS + 27.9 % PFPrA + 7.1 % PTFE	0.019	0.008
Textile2-P1	82.0 % PFPrA + 10.5 % PTFE + 7.5 % 6:2-FTOH	0.021	0.012
Textile2-P2	48.9 % PFPrA + 34.5 % PTFE + 16.6 % NaTFMS	0.028	0.011
Textile2-P3	53,6 % PTFE + 46.4 % 6:2-FTOH	0.155	0.068
Sheet1-P1	100.0 % PTFE	0.089	0.017
Sheet1-P2	95.7 % PTFE + 4.3 % 6:2FTOH	0.035	0.024
Sheet1-P3	96.3 % PTFE + 3.7 % 6:2FTOH	0.042	0.009
Sheet1-P4	99.5 % PTFE + 0.5 % 6:2FTOH	0.045	0.009

Fabric1_P1	100.0 % 6:2FTOH	0.245	0.399
Fabric1_P2	97.0 % 6:2FTOH + 3.0 % PTFE	0.071	0.042
Fabric1_P3	100.0 % 6:2FTOH	0.074	0.053
Fabric2_P1	62.0 % PFPrA + 26.3 % PFPD + 11.6 % NaTFMS	0.104	0.025
Fabric2_P2	92.7 % PFPrA + 7.3 % PTFE	0.106	0.030
Fabric2_P3	83.3 % 6:2FTOH + 16.7 % PFPrA	0.024	0.013

238 Figure S24: Raw point specific μ-XANES data and respective best LC fits in dashed lines.

239 LC-MS/MS data

240 **Table S2**: Qualifier and quantifier ions in the multireaction mode MS method part for soil and

241 sewage sludge samples

Compound	Abbreviation	PFAS group	Molecular ion [Da]	Quantifier [Da]	Qualifier [Da]	LOQ [ng/ml]	LOD [ng/ml]
Heptafluorobutyric acid	PFBA	PFCA	213	168.9	-	2,31	0,77
Nonafluoropentaonic acid	PFPeA	PFCA	263	219	-	1,11	0,37
Undecafluorohexanoic acid	PFHxA	PFCA	313	269	119	0,72	0,24
Tridecafluoroheptanoic acid	PFHpA	PFCA	363	319	169	0,41	0,14
Pentadecafluorooctanoic acid	PFOA	PFCA	413	369	169	0,31	0,10
Heptadecafluorononanoic acid	PFNA	PFCA	463	419	219	0,22	0,07
Nonadecafluorodecanoic acid	PFDA	PFCA	513	469	219	0,43	0,14
Nonafluorobutane-1-sulfonic acid	PFBS	PFSA	299	80	99	0,76	0,25
Tridecafluorohexane-1-sulfonic acid	PFHxS	PFSA	399	80	99	0,31	0,10
Heptadecafluoro-1-octanesulfonic acid	PFOS	PFSA	499	80	99	0,13	0,04

Table S3: Qualifier and quantifier ions in the multireaction mode MS method part for food contact material and fabric samples

Compound	Abbreviation	PFAS group	Molecular Ion [Da]	Quantifier [Da]	Qualifier [Da]	LOQ [ng/ml]	LOD [ng/ml]
Heptafluorobutyric acid	PFBA	PFCA	213	168.9	-	0,1	0,02
Nonafluoropentaonic acid	PFPeA	PFCA	263	219	-	0,07	0,02
Undecafluorohexanoic acid	PFHxA	PFCA	313	269	119	0,11	0,03
Tridecafluoroheptanoic acid	PFHpA	PFCA	363	319	169	0,08	0,02
Pentadecafluorooctanoic acid	PFOA	PFCA	413	369	219	0,12	0,03
Heptadecafluorononanoic acid	PFNA	PFCA	463	419	219	0,13	0,03
Nonadecafluorodecanoic acid	PFDA	PFCA	513	469	269	0,25	0,07
Perfluoroundecanoic acid	PFUnDA	PFCA	563	519	319	0,06	0,01
Perfluorododecanoic acid	PFDoDA	PFCA	613	569	319	0,014	0,003
Nonafluorobutane-1-sulfonic acid	PFBS	PFSA	298.9	80	99	0,17	0,04
Perfluoropentanesulfonic acid	PFPeS	PFSA	348.9	80	99	0,03	0,01
Tridecafluorohexane-1-sulfonic acid	PFHxS	PFSA	398.9	80	99	0,1	0,02
Perfluoroheptanesulfonic acid	PFHpS	PFSA	448.9	80	99	0,09	0,02
Heptadecafluoro-1-octanesulfonic acid	PFOS	PFSA	498.9	80	99	0,12	0,03

- **Table S4**: Isotopically labelled internal standards used for the quantification of PFAS of interest
- 247 for soil and sewage sludge samples.

Target PFAS species	Abbre-	Internal standards	Surrogate
	viation		
Heptafluorobutyric acid	PFBA	[¹³ C ₄] Heptafluorobutyric acid	¹³ C ₄ -PFBA
Nonafluoropentaonic acid	PFPeA	[1,2- ¹³ C ₂] Undecafluorohexanoic acid	¹³ C ₂ -PFHxA
Undecafluorohexanoic acid	PFHxA	[1,2- ¹³ C ₂] Undecafluorohexanoic acid	¹³ C ₂ -PFHxA
Dodecafluoroheptanoic acid	PFHpA	[1, 2, 3, 4-13C4] Pentadecafluorooctanoic acid	¹³ C ₄ -PFOA
Pentadecafluorooctanoic acid	PFOA	[1, 2, 3, 4-13C4] Pentadecafluorooctanoic acid	¹³ C ₄ -PFOA
Heptadecafluorononanoic acid	PFNA	[1, 2, 3, 4-13C4] Pentadecafluorooctanoic acid	¹³ C ₄ -PFOA
Nonadecafluorodecanoic acid	PFDA	[1, 2, 3, 4-13C4] Pentadecafluorooctanoic acid	¹³ C ₄ -PFOA
Perfluorobutanesulfonic acid	PFBS	[1, 2, 3, 4-13C4] Heptadecafluoro-1-octanesulfonic acid	¹³ C ₄ -PFOS
Tridecafluorohexane-1-sulfonic acid	PFHxS	[1, 2, 3, 4-13C4] Heptadecafluoro-1-octanesulfonic acid	¹³ C ₄ -PFOS
Heptadecafluoro-1-octanesulfonic acid	PFOS	[1, 2, 3, 4-13C4] Heptadecafluoro-1-octanesulfonic acid	¹³ C ₄ -PFOS

Table S5: Isotopically labelled internal standards used for the quantification of PFAS of interestfor food contact material and fabric samples.

Target PFAS species	Abbreviation	Internal standards	Surrogate
Heptafluorobutyric acid	PFBA	[¹³ C4] Heptafluorobutyric acid	¹³ C ₄ -PFBA
Nonafluoropentaonic acid	PFPeA	[¹³ C ₅] Nonafluoropentanoic acid	¹³ C ₅ -PFPeA
Undecafluorohexanoic acid	PFHxA	[1, 2, 3, 4, 5- ¹³ C ₅] Undecafluorohexanoic acid	¹³ C ₅ -PFHxA
Dodecafluoroheptanoic acid	PFHpA	[1, 2, 3, 4-13C4] Dodecafluoroheptanoic acid	¹³ C ₄ -PFHpA
Pentadecafluorooctanoic acid	PFOA	[1, 2, 3, 4-13C4] Pentadecafluorooctanoic acid	¹³ C ₈ -PFOA
Heptadecafluorononanoic acid	PFNA	[1, 2, 3, 4-13C4] Pentadecafluorooctanoic acid	¹³ C ₉ -PFNA
Nonadecafluorodecanoic acid	PFDA	[1, 2, 3, 4-13C4] Pentadecafluorooctanoic acid	¹³ C ₆ -PFDA
Perfluoroundecanoic acid	PFUnDA	[1, 2, 3, 4, 5, 6, 7- ¹³ C ₇] Perfluoroundecanoic acid	¹³ C ₇ -PFUnDA
Perfluorododecanoic acid	PFDoDA	[1, 2- ¹³ C ₂] Perfluorododecanoic acid	¹³ C ₂ -PFDoDA
Perfluorobutanesulfonic acid	PFBS	[1, 2, 3-13C3] Heptafluorobutylsulfonic acid	¹³ C ₃ -PFBS
Perfluoropentanesulfonic acid	PFPeS	[1, 2, 3-13C3] Heptafluorobutylsulfonic acid	¹³ C ₃ -PFHxS
Tridecafluorohexane-1-sulfonic acid	PFHxS	[1, 2, 3, 4- ¹³ C ₄] Tridecafluorohexane-1-sulfonic acid	¹³ C ₃ -PFHxS
Perfluoroheptanesulfonic acid	PFHpS	[¹³ C ₈] Heptadecafluoro-1-octanesulfonic acid	¹³ C ₈ -PFOS
Heptadecafluoro-1-octanesulfonic acid	PFOS	[¹³ C ₈] Heptadecafluoro-1-octanesulfonic acid	¹³ C ₈ -PFOS

Table S6: Mean values of all samples investigated by LC-MS/MS (target) analysis (per PFAS molecule in μ g/kg). No conversion to fluorine equivalent concentrations were conducted. Standard deviations were calculated from duplicate sample measurements. * Half of the data points were below the detection limit and not considered. # The analyte was not tested for this sample.

μg/kg	Soil1	Soil2	SL1	SL2	SL3	Textile1	Textile2	Paper1	Sheet1	Fabric1	Fabric2
PFBA	9.69 ± 0.95	2.99 ± 0.30	3.76 ± 0.31	0.64 ± 0.11	1.86 ± 0.01	2.56 ± 0.37	47.08 ± 3.62	6.45 ± 1.82	<loq< th=""><th><loq< th=""><th>17.16 ± 0.71</th></loq<></th></loq<>	<loq< th=""><th>17.16 ± 0.71</th></loq<>	17.16 ± 0.71
RSD	9.8 %	10.1 %	8.1 %	17.7 %	0.3 %	14.4 %	7.7 %	28.2 %	-	-	4.0 %
PFPeA	29.18 ± 1.09	1.04 ± 0.32	45.43 ± 1.91	0.33*	<loq< th=""><th><loq< th=""><th>3.56 ± 0.11</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>3.56 ± 0.11</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	3.56 ± 0.11	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
RSD	3.7 %	30.3 %	4.2 %	-	-	-	3.0 %	-	-	-	-
PFHxA	25.35 ± 0.29	7.54 ± 0.16	34.59 ± 0.28	5.10 ± 2.42	4.53 ± 0.80	3.91 ± 0.78	26.72 ± 0.22	<loq< th=""><th><loq< th=""><th>3.6 ± 0.69</th><th>6.21 ± 0.04</th></loq<></th></loq<>	<loq< th=""><th>3.6 ± 0.69</th><th>6.21 ± 0.04</th></loq<>	3.6 ± 0.69	6.21 ± 0.04
RSD	1.2 %	2.1 %	0.8 %	47.5 %	17.6 %	19.9 %	0.8 %	-	-	19.0 %	1.0 %
PFHpA	26.91 ± 0.36	0.89 ± 0.49	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>12.06 ± 1.02</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>12.06 ± 1.02</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>12.06 ± 1.02</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>12.06 ± 1.02</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	12.06 ± 1.02	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
RSD	1.4 %	54.9 %	-	-	-	-	8.5 %	-	-	-	-
PFOA	73.72 ± 4.89	29.96 ± 4.28	3.28 ± 0.38	2.84 ± 0.61	4.09 ± 1.04	4.66 ± 1.17	27.98 ± 1.58	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
RSD	6.6 %	14.3 %	11.4 %	21.5 %	25.5 %	25.0 %	5.7 %	-	-	-	-
PFNA	34.05 ± 0.62	23.42 ± 5.43	<loq< th=""><th><loq< th=""><th><loq< th=""><th>6.65 ± 4.76</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>6.65 ± 4.76</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>6.65 ± 4.76</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	6.65 ± 4.76	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
RSD	1.8 %	23.2 %	-	-	-	71.6 %	-	-	-	-	-
PFDA	351.86 ± 5.28	240.01 ± 16.76	1.85 ± 0.13	0.48 ± 0.01	3.76 ± 0.67	2.19 ± 1.25	2.91 ± 0.21	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
RSD	1.5 %	7.0 %	6.8 %	1.9 %	17.7 %	57.0 %	7.1 %	-	-	-	-
PFUDA	#	#	#	#	#	3.65 ± 2.96	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
RSD	-	-	-	-	-	81.1 %	-	-	-	-	-
PFDoDA	#	#	#	#	#	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
RSD	-	-	-	-	-	-	-	-	-	-	-
HFPO-DA	#	#	#	#	#	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>87.38±75.71</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>87.38±75.71</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>87.38±75.71</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>87.38±75.71</th><th><loq< th=""></loq<></th></loq<>	87.38±75.71	<loq< th=""></loq<>
RSD	-	-	-	-	-	-	-	-	-	70 %	-
PFBS	3.95 ± 0.24	4.12 ± 0.11	5.91 ± 0.35	6.15 ± 0.21	5.90 ± 0.29	7.64 ± 3.26	14.09 ± 0.11	9.67 ± 1.50	6.03 ± 1.31	17.18 ± 7.65	37.72 ± 5.53
RSD	6.0 %	2.8 %	5.9 %	3.5 %	5.0 %	42.6 %	0.8 %	15.5 %	22.0 %	45.0 %	15.0 %
PFPeS	#	#	#	#	#	<lod< th=""><th><lod< th=""><th><lod< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></lod<></th></lod<>	<lod< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></lod<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
RSD	-	-	-	-	-	-	-	-	-	-	-
PFHxS	1.34 ± 0.07	1.25 ± 0.05	1.76 ± 0.02	1.63 ± 0.14	2.26 ± 0.44	<loq< th=""><th><lod< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></lod<></th></loq<>	<lod< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></lod<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
RSD	5.0 %	4.3 %	1.2 %	8.7 %	19.3 %	-	-	-	-	-	-

PFHpS	#	#	#	#	#	<loq< th=""><th><lod< th=""><th><loq< th=""><th><loq< th=""><th>0.23*</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></lod<></th></loq<>	<lod< th=""><th><loq< th=""><th><loq< th=""><th>0.23*</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></lod<>	<loq< th=""><th><loq< th=""><th>0.23*</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.23*</th><th><loq< th=""></loq<></th></loq<>	0.23*	<loq< th=""></loq<>
RSD	-	-	-	-	-	-	-	-	-	-	-
PFOS	579.96 ± 4.16	2.16 ± 0.22	7.70 ± 0.50	2.42 ± 0.10	6.06 ± 0.14	1.99 ± 0.27	10.62 ± 3.12	4.09 ± 1.65	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
RSD		10.2 %	6.5 %	4.1 %	2.3 %	13.6 %	29.4 %	40.4 %	-	-	-
Sum amount 14 PFAS	1136.01 ± 8.47	313.38 ± 18.14	104.28 ± 2.09	19.59 ± 2.51	28.46 ± 1.57	33.25 ± 6.77	145.02 ± 5.15	20.21 ± 2.88	6.04 ± 1.32	108.16 ± 76.10	61.31 ± 5.57

259 **References**

- V. A. Solé, E. Papillon, M. Cotte, P. Walter and J. Susini, *Spectrochim. Acta B*, 2007, 62, 63-68.
- 262 2. B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12, 537-541.
- 263 3. S. Calvin and K. E. Furst, *XAFS for everyone*, 2013.
- 264 4. German Institute for Standardization, Beuth, Berlin, 2017, **DIN 38402-51:2017-05**, 51.
- 265 5. German Institute for Standardization, Beuth, Berlin, 2008, DIN 32645:2008-11, 28.