Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2023

- 1 **S1:** Composition of the test media according to DIN EN ISO 6341:2013-01 protocol.
- 2 pH adjusted to 7.00 ± 0.2 . Salinity did not exceed 0.585 ppt.

Cations	Ligands
$Ca^{2+} = 79,38 \text{ mg } L^{-1}$	$SO_4^{2-} = 48 \text{ mg } \text{L}^{-1}$
$Mg^{2+} = 12 mg L^{-1}$	$C1^{-1} = 313 \text{ mg } L^{-1}$
$Na^+ = 17,48 \text{ mg } L^{-1}$	
$K^+ = 2,99 \text{ mg } L^{-1}$	

3

- 4 S2: La and Gd forms (mg L⁻¹) after equilibrium according Visual MINTEQ speciation
- 5 modelling.

Nominal							
concentrations		5	10	15	20	25	30
(mg L ⁻¹)							
La	% dissolved	17.10	8.55	5.70	4.27	3.42	2.85
	$La(CO_3)_2^-$	6.00E-05	6.00E-05	6.00E-05	6.00E-05	6.00E-05	6.00E-05
	$La(SO_4)_2^-$	0.01	0.01	0.01	0.01	0.01	0.01
La dissolved	La ⁺³	0.55	0.55	0.55	0.55	0.55	0.55
forms	LaCl ⁺²	0.01	0.01	0.01	0.01	0.01	0.01
$(mg L^{-1})$	LaCO ₃ ⁺	0.05	0.05	0.05	0.05	0.05	0.05
(8 -)	LaHCO ₃ ⁺²	0.01	0.01	0.01	0.01	0.01	0.01
	LaOH ⁺²	0.01	0.01	0.01	0.01	0.01	0.01
	$LaSO_4^+$	0.42	0.42	0.42	0.42	0.42	0.42
La solid form $(mg I^{-1})$	La ₂ (CO ₃) _{3(s)}	6.83	15.07	23.31	31.55	39.79	48.03
(ing L)							

Nominal concentrations (mg L ⁻¹)		5	10	15	20	25	30
Gd	% dissolved	100	100	96.17	72.13	57.70	38.39
	$Gd(CO_3)_2$	4.22E-03	0.01	0.01	0.01	0.01	0.01
	$Gd(SO_4)_2^-$	0.02	0.05	0.07	0.07	0.07	0.07
Gd dissolved	Gd ⁺³	2.73	5.48	7.94	7.94	7.94	7.94
	GdCl ⁺²	0.03	0.06	0.09	0.09	0.09	0.09
(mg L ⁻¹)	GdCO ₃ ⁺	1.00	2.00	2.89	2.89	2.89	2.89
	GdHCO ₃ ⁺²	0.03	0.06	0.08	0.08	0.08	0.08
	GdOH ⁺²	0.25	0.51	0.73	0.73	0.73	0.73
	GdSO ₄ ⁺	2.04	4.02	5.73	5.73	5.73	5.73
Gd solid form (mg L ⁻¹)	Gd ₂ (CO ₃) _{3(s)}	0.00	0.00	0.90	8.76	16.63	24.49

7

8 S3: Element map detail of internal structure (circle in Figure 2c) in D. magna exposed to 15
9 mg L-1 of La for 72 h. Beamline: NANOSCOPIUM. Incident energy of 17.02 keV, pixel size
10 of 0.4 μm and integration time of 100 ms. (a) La (b) S (c) Zn (d) Fe.

11

12 **S4**: Distribution of Gd in organism of figure 2e (exposed to 15mg L⁻¹ of Gd for 48h). Area

13 selected: a. Filtering setae, b. intestine, c. shell gland, d. articulation of the antenna. Scale: 200

- 14 μm. Beamline: NANOSCOPIUM. Incident energy of 17.02 keV, pixel size of 1 μm,
- 15 integration time of 20 ms.

- 18 **S5:** Visualization of the intestinal tract with Compton images. Scale: 200 μm. Beamline:
- 19 NANOSCOPIUM. Incident energy of 17.02 keV, pixel size of 1 μ m, integration time of 20
- 20 ms.

21

22

23 S6: Normalized intensity of La and Gd measured in the total organisms and in the intestinal
24 tract. Beamline: NANOSCOPIUM. Incident energy of 17.02 keV. N.A. : not available

	Total intensity	Intensity in the intestinal tract
15 mg L ⁻¹ La for 48 h (Figure 2a)	1897	1399
15 mg L ⁻¹ La for 72 h (Figure 2b)	1783	1396
15 mg L ⁻¹ La for 72 h (Figure 2c)	1671	1359
15 mg L ⁻¹ Gd for 48 h (Figure 2d)	290	N.A.
15 mg L ⁻¹ Gd for 48 h (Figure 2e)	233	N.A.
15 mg L ⁻¹ Gd for 72 h (Figure 2f)	1379	N.A.

- 25
- 26 S7: Distribution of Gd in organism of figure 2d viewed from the front. Grey: calcium and red:
- 27 gadolinium. Scale: 200 µm. Beamline: NANOSCOPIUM. Incident energy of 17.02 keV, pixel
- 28~ size of 1 $\mu m,$ integration time of 20 ms.

30 S8: Ratio between Ln and Ca intensity for different organisms at 48 and 72h. Beamline:
31 LUCIA. Incident energy of 7.25 keV.

1	^
- 4	
2	_

Organisn	ns	La/Ca	Gd/Ca
Control	48 h	1.07E-06	2.55E-03
Control	48 h	1.92E-04	4.35E-04
Control	48 h	2.95E-04	3.93E-04
Control	48 h	2.68E-05	5.75E-05
Control	72 h	4.56E-04	1.48E-05
Control	72 h	8.76E-06	3.17E-04
Control	72 h	2.76E-07	9.18E-05
Control	72 h	3.03E-05	1.10E-04
Gd	48 h	1.07E-06	4.59E-01
Gd	48 h	1.92E-04	9.71E-01
Gd	72 h	4.56E-04	1.41E+01
La	48 h	6.17E-02	2.55E-03
La	48 h	1.62E-01	4.35E-04
La	72 h	2.29E-01	1.48E-05