Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2023

Supplemental Data

TITLE:	Ecological Risk of Galaxolide and Its Transformation Product
	Galaxolidone: Evidence from the Literature and A Case Study in
	Guangzhou Waterways
AUTHORS:	Yanrong Su, Faxu Li, Xiangxiang Xiao, Huizhen Li, Dali Wang*, Jing
	You
ADDRESS:	Guangdong Key Laboratory of Environmental Pollution and Health,
	School of Environment, Jinan University, Guangzhou 511443, China
JOURNAL:	Environmental Science: Processes & Impacts
NO. OF PAGES:	26
FIGURES:	2

TABLES:8

*Corresponding author.

Tel: 0086-20-3733-6629, Email: <u>wdali2018@jnu.edu.cn</u>

Content:

Text S1. Chemicals and reagents

Text S2. Sample collection and preparation

Text S3. Instrumental analysis of HHCB and HHCB-lac

Text S4. Quality assurance and quality control

Fig. S1. Probable transformation products of galaxolide (HHCB).

Fig. S2. Cumulative frequency of the ratios for HHCB-lac and HHCB in different environmental media reported in the literature

Fig. S3. Location of sampling sites

Table S1. Concentrations (ng/L) of HHCB and HHCB-lac in surface water samples collected from the Pearl River, South China.

Table S2. Concentrations (ng/g) of HHCB and HHCB-lac and their concentration ratio (HHCB-

lac/HHCB) in personal care products reported in the literature.

Table S3. Concentrations of HHCB and HHCB-lac and their concentration ratio (HHCB-

lac/HHCB) in wastewater treatment plant reported in the literature.

Table S4. Concentrations (ng/mL) of HHCB and HHCB-lac and their concentration ratio

(HHCB-lac/HHCB) in surface water reported in the literature.

Table S5. Concentrations (ng/g) of HHCB and HHCB-lac and their concentration ratio (HHCB-

lac/HHCB) in sediment reported in the literature.

Table S6. Concentrations (ng/g) of HHCB and HHCB-lac and their concentration ratio (HHCB-lac/HHCB) in indoor dust reported in the literature.

Table S7. Concentrations (ng/g) of HHCB and HHCB-lac and their concentration ratio (HHCB-lac/HHCB) in aquatic organisms reported in the literature.

Table S8. Concentrations (ng/g) of HHCB and HHCB-lac and their concentration ratio (HHCB-lac/HHCB) in human beings reported in the literature.

Text S1. Chemicals and reagents

Galaxolide (HHCB) was purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany). Galaxolidone (HHCB-lac) was obtained from Toronto Research Chemicals (Toronto, Ontario, Canada). Tonalide-d₃ (AHTN-D3) was used as the internal standard, which was acquired from Dr. Ehrenstofer GmbH. 4,4'-Dibromooctafluorobiphenyl (DBOFB) as surrogate standards was purchased from Aladdin (Shanghai, China).

Text S2. Samples collection and preparation

Four litters of the surface water were collected at each sampling site and transported back to the laboratory immediately. The water samples were then filtered using glass fiber filters with 0.7 µm pore size. The DBOFB was added to each sample at a concentration of 50 ng/mL as the surrogate. Then the sample was loaded to a solid phase extraction (SPE) cartridge containing 200 mg of mixture adsorbents (HLB:WAX:WCX, 2:1:1, w/w/w). After extraction, the SPE cartridge was washed using 5 mL of methanol, 5 mL of methanol with 0.5% ammonia, and 5 mL of methanol with 0.5% acetic acid in sequence. Afterwards, the SPE cartridge was eluted using 5 mL of acetone, 5 mL of dichloromethane, and 5 mL of hexane. The elution was then concentrated with nitrogen blowing evaporation, resolved in 1 mL of hexane, and analyzed for musks on GC-MS/MS after adding the corresponding internal standards (50 ng/mL).

Text S3. Instrumental analysis of HHCB and HHCB-lac

The concentrations of HHCB and HHCB-lac were analyzed by GC-MS/MS (Shimadzu

TQ8040) in in electron impact ionization mode. An SH-RXi-5Sil-MS column (30 m \times 0.25 mm, 0.25 µm film thickness) was used to separate the target compounds. The carrier gas (helium) was maintained at a flow rate of 1.0 mL/min. The initial column temperature was 60 °C, which was ramped up to 180 °C at a rate of 20 °C/min, finally increased to 280 °C at 10 °C/min and held at 280 °C for 5 min. The injector, ion source and transfer line temperatures were 250 °C, 230 °C and 250 °C, respectively. The injection mode is splitless, and the injection volume is 1 µL. MS-detector acquired in the selected ion monitoring mode (SIM) at an electron impact energy of 70 eV.

Text S4. Quality assurance and quality control

To ensure the stability of the instrument, a calibration standard was analyzed every 10 samples, and variations of individual compounds were within 20%. Recoveries of the analytes based on the isotopic internal standard correction ranged from 82.4% to 112.0%, with relative standard deviations less than 20.0%. The calibration standards were prepared ranging from 1 to 1000 µg/L with 50 µg/L of internal standard, resulting in acceptable linearities for all compounds (correlation coefficients of $r^2 > 0.99$). Special precautions were taken to prevent intra-laboratory contamination that could occur from perfumes, deodorants, etc. The chemists involved in this analysis were asked not to use any cosmetic during the extraction and cleaning procedure.

Fig. S1. Probable transformation products of galaxolide (HHCB). H0 is the parent molecule of HHCB and H4 is the galaxolidone. Detailed information is available in the below references.

- Ding, T.; Li, W.; Cai, M.; Jia, X.; Yang, M.; Yang, B.; Li, J., Algal toxicity, accumulation and metabolic pathways of galaxolide. *Journal of Hazardous Materials* 2020, 384, 121360.
- Herrera López, S.; Hernando, M. D.; Gómez, M. J.; Santiago-Morales, J.; Rosal, R.; Fernández-Alba, A., Investigation of Galaxolide degradation products generated under oxidative and irradiation processes by liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry and comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. *Rapid Communications in Mass Spectrometry* 2013, 27, (11), 1237-1250.
- Martin, C.; Moeder, M.; Daniel, X.; Krauss, G.; Schlosser, D., Biotransformation of the polycyclic musks HHCB and AHTN and metabolite formation by fungi occurring in freshwater environments. *Environmental Science & Technology* 2007, 41, (15), 5395-5402.
- Sanchez-Prado, L.; Lourido, M.; Lores, M.; Llompart, M.; Garcia-Jares, C.; Cela, R., Study of the photoinduced degradation of polycyclic musk compounds by solid-phase microextraction and gas chromatography/mass spectrometry. *Rapid Communications in Mass Spectrometry* 2004, 18, (11), 1186-1192.

Fig. S2 Location of sampling sites

Fig. S3 Cumulative frequency of the ratios for HHCB-lac and HHCB in different environmental media reported in the literature

Site	ННСВ	HHCB-lac	Ratio
L1	215	67.5	0.314
L2	2620	740	0.283
L3	835	260	0.311
L4	352	130	0.370
L5	235	71.3	0.304
L6	211	56.6	0.269
L7	904	312	0.345
L8	483	260	0.539
L9	241	83.3	0.346
L10	250	43.5	0.174
L11	214	43.2	0.202
L12	348	110	0.315
L13	308	108	0.351
L14	184	83.5	0.454
L15	110	58.8	0.534
L16	118	44.3	0.376
L17	124	55.5	0.449
L18	139	66.4	0.478
L19	106	38.2	0.359
L20	498	199	0.399
L21	564	229	0.406
L22	94.9	24.5	0.258
L23	208	32.5	0.156

from the Pearl River, South China and their concentration ratio at individual sites.

Table S1. Concentrations (ng/L) of HHCB and HHCB-lac in surface water samples collected

Site	ННСВ	HHCB-lac	Ratio
L24	96.6	24.7	0.255
L25	60.0	24.5	0.408
L26	39.0	21.6	0.553
L27	62.7	10.4	0.166
L28	44.1	11.3	0.256
L29	34.9	7.28	0.209
L30	38.9	7.90	0.203
L31	29.7	6.82	0.230
L32	33.4	8.13	0.243
L33	42.4	8.91	0.211
L34	35.0	22.7	0.647
L35	36.9	7.58	0.205
L36	27.8	4.20	0.151
L37	20.0	3.18	0.159
L38	24.8	8.60	0.347
L39	24.7	8.40	0.341

Country	Product	HHCB	HHCB-lac	Raito	Reference
America	Body splash	4.99×10 ⁶	2.9×10 ³	5.81×10 ⁻⁴	1
	Body oil	1.45×10^{6}	6.81×10 ³	4.70×10 ⁻³	
	Perfume	1.01×10^{6}	3.04×10^{4}	3.01×10 ⁻²	
	Eau de toilette	2.06×10^{5}	9.39×10 ³	4.56×10 ⁻²	
	Body mist	4.01×10^{2}	2.50	6.23×10 ⁻³	
	Eau de toilette	6.00	2.50	0.417	
	Body mist	2.50	1.38×10^{2}	55.2	
	Body lotion	3.74×10^{6}	9.60×10 ³	2.57×10 ⁻³	
	Body cream	2.07×10^{6}	2.17×10^{5}	0.105	
	Body lotion	6.98×10 ⁵	8.61×10^{2}	1.23×10 ⁻³	
	Body lotion	4.95×10 ⁵	7.19×10^{2}	1.45×10 ⁻³	
	Body lotion	2.98×10 ⁵	1.90×10^{3}	6.38×10 ⁻³	
	Body lotion	7.28×10^{2}	3.20×10^{4}	44.0	
	After sun lotion	2.50	2.50	1.00	
	Antiperspirant	2.25×10^{6}	2.50	1.11×10 ⁻⁶	
	Antiperspirant/deodorant	7.03×10^{5}	2.50	3.56×10 ⁻⁶	
	Antiperspirant	2.71×10^{3}	2.50	9.23×10 ⁻⁴	
	Antiperspirant	8.01×10^{2}	2.50	3.12×10 ⁻³	
	Shaving cream	1.23×10^{6}	1.12×10^{4}	9.11×10 ⁻³	
	Bath soap	4.56×10^{5}	5.16×10 ³	1.13×10 ⁻²	
	Bath soap	1.93×10 ⁵	2.50	1.30×10 ⁻⁵	
	Body wash	1.04×10^{5}	2.50	2.40×10 ⁻⁵	
	Shaving cream	7.12×10^{4}	2.50	3.51×10 ⁻⁵	
	Bash soap	6.46×10^{2}	2.50	3.87×10 ⁻³	
	Facial soap	3.30×10^{2}	2.50	7.58×10 ⁻³	
	Bath soap	1.71×10^{2}	2.50	1.46×10 ⁻²	
	Shaving gel	36.0	2.50	6.94×10 ⁻²	
	Shaving cream	2.50	2.50	1.00	
	Shower gel	2.50	2.50	1.00	
	Shaving cream	2.50	2.50	1.00	
	Shower gel	2.50	2.50	1.00	
	Shower gel	2.50	2.50	1.00	
	Hair cream	8.55×10^{5}	2.50	2.92×10 ⁻⁶	
	Shampoo	1.22×10^{5}	1.68×10^{3}	1.38×10-2	
	Conditioner	9.75×10 ⁴	4.95×10^{2}	5.08×10-3	
	Hair gel	6.14×10^{4}	6.24×10^{2}	1.02×10 ⁻²	
	Conditioner	6.00×10^{4}	3.91×10^{2}	6.52×10 ⁻³	
	Conditioner	3.31×10^{4}	5.70×10^{3}	0.172	

Table S2. Concentrations (ng/g) of HHCB and HHCB-lac and their concentration ratio (HHCB-lac/HHCB) in personal care products reported in the literature.

Country	Product	ННСВ	HHCB-lac	Raito	Reference
	Hair gel	2.69×10 ⁴	4.12×10 ²	1.53×10 ⁻²	
	Hair cream	1.29×10 ⁴	7.92×10 ³	0.614	
	Shampoo	1.36×10 ³	2.50	1.84×10-3	
	Shampoo	1.00×10^{2}	2.50	2.50×10 ⁻²	
	Shampoo	95.0	2.50	2.63×10 ⁻²	
	Conditioner	2.50	2.50	1.00	
	Furniture polish	6.46×10 ⁵	2.50	3.87×10-6	
	Laundry detergent	8.49×10 ⁴	1.12×10 ²	1.32×10 ⁻³	
	Fabric softener	9.66×10 ²	2.50	2.59×10 ⁻³	
	Disinfecting wipe	7.86×10 ²	2.50	3.18×10-3	
	Liquid bleach	3.26×10 ²	2.50	7.67×10-3	
	Laundry detergent	79.0	2.50	3.16×10 ⁻²	
	Fabric softener	2.50	2.50	1.00	
	Stain remover	2.50	2.50	1.00	
	Liquid dish cleaner	2.50	2.50	1.00	
	Disinfectant cleaner	2.50	2.50	1.00	
	Cleaning solvent	2.50	2.50	1.00	
	Stain remover	2.50	2.50	1.00	
	Cleaning solvent	2.50	2.50	1.00	
	Cleaning solvent	2.50	2.50	1.00	
	Bleach cleanser	2.50	2.50	1.00	
	Disinfecting wipe	2.50	2.50	1.00	
China	Hair care products	1.43×10 ⁵	9.10×10 ²	6.36×10-3	2
	Body washes	6.96×10 ³	3.10×10 ²	4.45×10 ⁻²	
	Toilet soaps	1.19×10 ⁴	5.78×10 ³	0.486	
	Skin lotions	3.75×10 ⁴	1.10×10 ³	2.93×10 ⁻²	
	Make up	1.14×10^{4}	2.33×10 ³	0.204	

Country	Location	Unit	ННСВ	HHCB-lac	Ratio	Reference
Spain	Effluent	ng/mL	4.25×10 ²	3.16×10 ²	0.743	3
			2.07×10 ²	1.46×10 ²	0.706	
			2.19×10 ²	1.22×10 ²	0.556	
			8.59×10 ²	5.75×10 ²	0.670	
			4.06×10 ²	5.35×10 ²	1.32	
			3.24×10 ²	6.56×10 ²	2.02	
Canada	Effluent	ng/mL	0.180	0.068	0.378	4
			0.130	0.044	0.338	
Italy	Influent	ng/mL	4.24	0.508	0.120	5
			6.27	0.949	0.151	
			3.63	0.339	9.35×10-2	
			6.07	0.508	8.38×10-2	
Italy	Enfluent	ng/mL	4.17	2.37	0.569	5
			4.54	2.81	0.619	
			5.80	1.76	0.304	
			5.80	4.17	0.719	
Italy	Sludge	ng/g	9.27×10 ⁴	7.22×10 ⁴	0.779	6
			9.50×10 ⁴	7.22×10 ⁴	0.760	
			9.24×10 ⁴	6.87×10 ⁴	0.744	
			8.92×10 ⁴	7.16×10 ⁴	0.803	
America	Influent	ng/mL	4.76	0.741	0.156	6
			9.63	0.869	9.02×10 ⁻²	
			7.60	0.869	0.114	
			10.4	0.855	8.22×10 ⁻²	
			12.7	1.15	9.06×10 ⁻²	

Table S3. Concentration of HHCB and HHCB-lac and their concentration ratio (HHCB-lac/HHCB) in wastewater treatment plant reported in the literature.

Country	Location	Unit	ННСВ	HHCB-lac	Ratio	Reference
			1.78	0.146	8.20×10 ⁻²	
			4.37	0.535	0.122	
			4.29	0.323	7.53×10 ⁻²	
			7.73	0.581	7.52×10 ⁻²	
			11.5	0.942	8.19×10 ⁻²	
America	Enfluent	ng/mL	2.90	1.36	0.467	6
			3.66	0.823	0.225	
			2.81	1.13	0.402	
			3.73	1.40	0.375	
			3.66	4.00	1.09	
			2.36	1.04	0.441	
			2.66	1.57	0.590	
			2.58	0.820	0.318	
			3.31	1.60	0.483	
			2.59	3.08	1.19	
America	Sludge	ng/g	6.34×10 ⁴	2.04×10^{4}	0.322	6
			1.17×10 ⁵	2.20×10^{4}	0.188	
			7.91×10 ⁴	1.46×10^{4}	0.185	
			7.65×10 ⁴	1.29×10 ⁴	0.169	
			1.08×10 ⁵	1.98×10 ⁴	0.183	
Germany	Enfluent	ng/mL	0.254	6.70×10 ⁻²	0.263	7
			0.265	6.99×10 ⁻²	0.264	
			8.81×10 ⁻²	1.46×10 ⁻²	0.166	
			8.94×10 ⁻²	1.46×10 ⁻²	0.163	
			0.107	3.08×10 ⁻²	0.287	
			9.61×10 ⁻²	2.87×10-2	0.299	
			4.28×10-2	4.03×10 ⁻²	0.942	
			5.85×10 ⁻²	5.15×10 ⁻²	0.880	
			0.269	0.137	0.509	
			0.652	0.278	0.427	
			0.433	0.181	0.417	
Swiss	Influent	ng/mL	6.90	0.430	0.430	8
Swiss	Enfluent	ng/mL	0.860	0.860	1.05	8
Germany	Influent	ng/mL	2.18	0.270	0.124	9
			2.33	0.270	0.116	
			1.93	0.230	0.119	
			1.86	0.215	0.116	
			1.41	0.170	0.121	
Germany	Enfluent	ng/mL	0.795	0.795	0.528	9
-			0.691	0.691	0.535	
			0.652	0.652	0.567	

Country	Location	Unit	ННСВ	HHCB-lac	Ratio	Reference
			0.669	0.669	0.508	
			0.669	0.669	0.501	
Guangzhou	Influent	ng/mL	1.08	0.547	0.506	10
Guangzhou	Enfluent	ng/mL	0.491	1.00	2.04	10
Thailand	Influent	ng/mL	2.51	4.53	1.80	11
Thailand	Enfluent	ng/mL	1.56	5.30	3.39	11
Tailand	Sludge	ng/g	3.56×10^{3}	5.25×10^{4}	14.7	11
Germany	Influent	ng/mL	2.22	0.690	0.311	12
			5.70×10 ⁻²	0.153	2.68	
Germany	Enfluent	ng/mL	0.954	0.532	0.558	12
			6.40×10 ⁻²	0.143	2.23	
Italy	Influent	ng/mL	5.70	0.905	0.159	13
Italy	Enfluent	ng/mL	7.01	5.11	0.728	13
America	Influent	ng/mL	4.30×10-2	0.255	5.93	14
			7.03	0.300	4.27×10-2	
			0.423	0.140	0.331	
America	Enfluent	ng/mL	6.70×10 ⁻²	0.467	6.97	14
			1.00×10-2	7.30×10 ⁻²	7.30	
			5.30×10-2	0.288	5.43	
			4.60×10 ⁻²	8.60×10 ⁻²	1.87	
America	Influent	ng/mL	0.455	0.766	1.68	14
			0.284	0.107	0.377	
			0.522	0.238	0.456	
America	Enfluent	ng/mL	2.80×10 ⁻²	0.322	11.5	14
			9.80×10 ⁻²	0.267	2.72	
			3.90×10 ⁻²	0.545	14.0	
Switzerland	Sludge	ng/g	1.19×10^{4}	1.70×10^{3}	0.143	15
			1.21×10^{4}	1.90×10^{3}	0.157	
			3.60×10^{4}	2.90×10^{3}	8.06×10 ⁻²	
			2.68×10^{4}	3.50×10^{3}	0.131	
			1.16×10 ⁴	1.60×10^{3}	0.138	
			2.82×10^{4}	2.20×10^{3}	7.80×10 ⁻²	
			2.46×10^{4}	1.80×10^{3}	7.32×10 ⁻²	
			2.20×10^{4}	3.50×10^{3}	0.159	
			1.88×10^{4}	3.10×10 ³	0.165	
			2.92×10^{4}	1.10×10^{3}	3.77×10 ⁻²	
			2.41×10^{4}	1.40×10^{3}	5.81×10 ⁻²	
			2.12×10^{4}	8.00×10^{2}	3.77×10 ⁻²	
			1.55×10^{4}	8.00×10^{2}	5.16×10 ⁻²	
			1.69×10^{4}	2.10×10^{3}	0.124	

Country	Location	Unit	HHCB	HHCB-lac	Ratio	Reference
			1.64×10^{4}	9.00×10 ²	5.49×10 ⁻²	
			2.30×10^{4}	2.30×10 ³	0.100	
			1.90×10^{4}	9.00×10 ²	4.74×10 ⁻²	
			7.40×10^{3}	6.00×10^{2}	8.11×10 ⁻²	
			1.37×10 ⁴	1.40×10 ³	0.102	
			1.30×10 ⁴	8.00×10^{2}	6.15×10 ⁻²	
			2.15×10^{4}	3.30×10 ³	0.153	
			2.86×10 ⁴	1.60×10 ³	5.59×10 ⁻²	

Table S4. Concentration (ng/mL) of HHCB and HHCB-lac and their concentration ratio (HHCB-

Country	HHCB	HHCB-lac	Ratio	Reference
Germany	1.25	1.26	1.01	16
	0.287	0.976	3.40	
	0.164	0.301	1.84	
	0.123	0.344	2.80	
	0.123	0.100	4.32	
	0.123	0.474	3.85	
	8.21×10 ⁻²	0.158	1.92	
	0.246	1.38	5.60	
	0.174	0.746	4.28	
Germany	-	-	7.40	16
			6.45	
			10.5	
			8.03	
			4.75	
			1.58	
			0.997	
			1.26	
			1.68	
			4.16	
			3.48	
			1.89	
			4.69	
			2.68	
			3.58	
			1.14	
			1.35	
			2.25	
			1.61	
			2.62	
			2.93	
			4.89	
			3.93	
			3.99	
			2.51	
			1.39	
			0.87	
			1.23	
			1.34	
			2.34	
			2.45	

lac/HHCB) in surface water reported in the literature.

Country	ННСВ	HHCB-lac	Ratio	Reference
			4.98	
			5.03	
			2.65	
			1.33	
			0.907	
			1.33	
			1.64	
			2.91	
			3.33	
Spain	3.24	3.24	0.100	3
	2.43	2.43	1.00	
	4.46	2.43	0.545	
	1.62	1.62	1.00	
	1.62	2.03	1.25	
	1.22	0.810	0.667	
	1.62	2.03	1.25	
	6.48	4.05	0.625	
	12.2	8.51	0.700	
	11.7	7.29	0.621	
	9.32	6.89	0.739	
	13.0	8.51	0.656	
	14.2	39.3	2.77	
	8.91	16.6	1.86	
	4.46	2.03	0.455	
	3.24	2.03	0.625	
	3.24	1.62	0.500	
	6.89	5.67	0.824	
	2.03	8.91	4.40	
	8.91	6.89	0.773	
Canada	7.00×10 ⁻³	4.00×10-3	0.571	4
	3.00×10 ⁻³	1.00×10 ⁻³	0.333	
	2.00×10 ⁻³	1.00×10 ⁻³	0.500	
	4.10×10 ⁻²	2.50×10-2	0.610	
Germany	1.62×10 ⁻²	9.97×10-3	9.97×10-3	7
	9.97×10 ⁻³	6.26×10 ⁻³	6.26×10 ⁻³	
	5.03×10 ⁻³	3.79×10 ⁻³	3.79×10 ⁻³	
	5.46×10-3	3.81×10-3	3.81×10-3	
	0.105	1.79×10 ⁻²	1.79×10 ⁻²	
	3.86×10 ⁻³	4.28×10-3	4.28×10-3	
	4.73×10 ⁻²	1.46×10 ⁻²	1.46×10 ⁻²	
	4.52×10 ⁻²	1.46×10-2	1.46×10 ⁻²	

Country	ННСВ	HHCB-lac	Ratio	Reference
	0.118	6.88×10 ⁻²	6.88×10-2	
	5.85×10-2	2.54×10 ⁻²	2.54×10-2	
	3.00×10 ⁻²	1.18×10 ⁻²	1.18×10 ⁻²	
	0.177	5.72×10 ⁻²	5.72×10 ⁻²	
	0.126	4.28×10-2	4.28×10-2	
	4.86×10-2	2.42×10 ⁻²	2.42×10-2	
	7.96×10 ⁻²	4.03×10 ⁻²	4.03×10 ⁻²	
	4.20×10 ⁻²	2.05×10 ⁻²	2.05×10 ⁻²	
	5.65×10-2	2.63×10-2	2.63×10-2	
	5.94×10 ⁻²	2.55×10-2	2.55×10-2	
	8.63×10 ⁻²	4.12×10 ⁻²	4.12×10 ⁻²	
	4.62×10 ⁻²	2.47×10 ⁻²	2.47×10 ⁻²	
	0.133	7.43×10 ⁻²	7.43×10 ⁻²	
	4.95×10-2	2.76×10-2	2.76×10-2	
	6.23×10 ⁻²	4.05×10 ⁻²	4.05×10 ⁻²	
	6.15×10 ⁻²	3.05×10 ⁻²	3.05×10 ⁻²	
	6.77×10 ⁻²	3.39×10-2	3.39×10-2	
	5.41×10 ⁻²	2.73×10 ⁻²	2.73×10-2	
	4.79×10 ⁻²	2.73×10 ⁻²	2.73×10 ⁻²	
Italy	2.53	0.511	0.202	17
	3.30	1.74	0.527	
	0.952	0.442	0.464	
	0.282	7.43×10 ⁻²	0.264	
	2.52	0.517	0.205	
	1.49	0.402	0.270	
	2.00	0.707	0.354	
	1.42	0.592	0.416	
	0.510	0.362	0.710	
	0.563	0.369	0.656	
	0.952	0.598	0.628	
	0.684	0.750	1.10	
	1.96	0.696	0.356	
	0.161	4.66×10 ⁻²	0.290	
	0.174	8.44×10 ⁻²	0.484	
Germany	1.60×10 ⁻²	3.60×10 ⁻²	3.60×10 ⁻²	12

Table S5. Concentrations (ng/g) of HHCB and HHCB-lac and their concentration ratio (HHCB-

Country	ННСВ	HHCB-lac	Ratio	Reference
	2.68×10 ²	3.04×10 ²	1.13	18
	1.12×10^{2}	2.21×10^{2}	1.97	
	1.07×10^{2}	83.7	0.782	
	5.51×10 ³	3.44×10 ³	0.623	
	31.9	43.7	1.37	
	1.01×10^{2}	1.70×10^{2}	1.68	
	13.7	15.8	1.15	
	14.7	20.3	1.38	
China	25.5	34.3	1.35	
	11.1	10.9	0.982	
	15.6	12.6	0.808	
	13.8	13.9	1.01	
	6.89	13.7	1.99	
	13.2	11.0	0.833	
	5.29	8.14	1.54	
	10.0	0.00	0.00	

lac/HHCB) in sediment reported in the literature.

Table S6. Concentrations (ng/g) of HHCB and HHCB-lac and their concentration ratio (HHCB-

Country	Indoor house dust type	ННСВ	HHCB-lac	Ratio	Reference
China	Houses	37.9	3.16	8.34×10 ⁻²	19
	Dormitories	31.9	3.97	0.124	
	Offices	26.6	1.00	3.76×10 ⁻²	
	Laboratories	9.09	1.19	0.131	
	PC	51.9	3.47	6.69×10 ⁻²	
	Aircondition	42.2	11.1	0.263	
Canada	Fresh dust	6.76×10^{2}	4.53×10^{2}	0.670	20
	Household vacuum dust	9.92×10 ²	4.92×10 ²	0.496	

lac/HHCB) in indoor dust reported in the literature.

Country	ННСВ	HHCB-lac	Ratio	Reference
Germany	8.02×10 ²	8.02×10 ²	1.00	16
	1.18×10^{4}	2.98×10 ³	0.251	
	9.67×10 ³	4.27×10 ³	0.441	
	4.99×10 ³	2.32×10 ³	0.464	
	2.36×10 ³	9.35×10 ²	0.396	
	2.41×10^{3}	3.88×10 ³	1.61	
	2.94×10 ³	2.94×10 ³	1.00	
	2.41×10 ³	1.87×10^{3}	0.778	
	2.18×10^{3}	1.11×10^{3}	0.510	
	25.5	58.1	2.28	
	27.2	75.3	2.77	
	11.6	0.00	0.00	
	20.3	0.00	0.00	
	22.4	0.00	0.00	
	22.3	0.00	0.00	
	52.4	52.1	0.994	
	19.0	0.00	0.00	
	16.9	8.20	0.485	
	19.1	9.30	0.487	
	23.7	1.25×10^{2}	5.25	
	38.0	55.8	1.47	
	58.8	8.70	0.148	
	12.8	56.6	4.42	
	25.5	58.1	2.28	21
	27.2	75.3	2.77	
	11.6	0.00	0.00	
	20.3	0.00	0.00	
	22.4	0.00	0.00	
	22.3	0.00	0.00	
	52.4	52.1	0.994	
	19.0	0.00	0.00	
	16.9	8.20	0.485	
	19.1	9.30	0.487	
	23.7	1.25×10^{2}	5.25	
	38.0	55.8	1.47	
	58.8	8.70	0.148	
	12.8	56.6	4.42	

lac/HHCB) in aquatic organisms reported in the literature.

Table S8. Concentrations (ng/g) of HHCB and HHCB-lac and their concentration ratio (HHCB-

Country	Туре	HHCB	HHCB-lac	Ratio	Reference
China	Umbilical cord blood	8.40	83.3	9.92	22
	Breast milk	7.90	8.60	1.09	
	Maternal	31.1	18.0	0.579	
	Umbilical cord blood	56.8	15.1	0.266	
	Breast milk	12.8	2.80	0.219	
China	Breast milk	4.56×10^{2}	2.57×10^{2}	0.564	23
		58.1	1.79×10^{2}	3.08	
		1.66×10^{2}	1.41×10^{2}	0.852	
		3.56×10^{2}	1.27×10^{2}	0.356	
		1.49×10^{2}	1.33×10^{2}	0.897	
		93.1	1.25×10^{2}	1.34	
		1.61×10^{2}	91.6	0.568	
		1.56×10^{2}	76.0	0.487	
		68.3	83.7	1.23	
		56.4	75.1	1.33	
		91.7	60.6	0.661	
		23.9	68.3	2.85	
		36.3	54.1	1.49	
		57.0	45.0	0.790	
		73.8	41.9	0.567	
		23.7	33.1	1.40	
		51.8	31.8	0.613	
		0.456	28.6	62.6	
		46.6	23.0	0.493	
		24.2	18.7	0.772	
		19.0	11.9	0.629	
		7.00	8.61	1.23	
		6.29	0.00	0.00	
		34.3	0.00	0.00	
		1.02×10^{2}	0.00	0.00	
		1.87×10^{2}	0.00	0.00	
		15.3	0.00	0.00	
		7.94	6.55	0.825	
		15.7	9.99	0.635	
		12.7	15.5	1.22	
		17.8	25.3	1.42	
		35.2	22.2	0.629	
		0.00	35.4	0.00	
		17.5	36.4	2.08	
		28.0	34.3	1.23	

lac/HHCB) in human bodies reported in the literature.

Country Type	HHCB	HHCB-lac	Ratio	Reference
	45.4	32.2	0.709	
	40.6	40.9	1.01	
	33.0	35.2	1.07	
	18.1	29.0	1.60	
	41.0	31.0	0.756	
	25.9	23.3	0.902	
	5.51	14.5	2.63	
	18.4	15.6	0.848	
	10.5	9.98	0.954	
	7.93	5.68	0.717	
	13.5	0.00	0.00	
	10.5	0.00	0.00	
	18.3	0.00	0.00	
	5.69	5.62	0.988	
	7.77	11.2	1.44	
	7.77	15.9	2.05	
	20.2	18.8	0.932	
	30.7	21.1	0.687	
	30.4	25.6	0.844	
	15.4	27.8	1.81	
	30.4	33.4	1.10	
	11.1	0.00	0.00	
	21.3	0.00	0.00	
	2.69	2.31	0.861	
	6.11	5.88	0.962	
	14.0	9.12	0.650	
	8.78	13.5	1.54	
	19.1	15.7	0.820	
	23.2	27.6	1.19	
	33.1	32.2	0.974	
	20.1	0.00	0.00	
	7.50	4.49	0.599	
	7.50	8.98	1.20	
	12.3	18.0	1.46	
	32.4	31.2	0.963	
	3.00	0.00	0.00	
	5.24	0.00	0.00	
	8.09	0.00	0.00	
	10.3	0.00	0.00	
	12.9	0.00	0.00	
	15.6	0.00	0.00	

Country	Туре	HHCB	HHCB-lac	Ratio	Reference
		18.1	0.00	0.00	
		20.8	0.00	0.00	
		240	0.00	0.00	
		5.10	0.00	0.00	
		7.50	0.00	0.00	
		9.90	0.00	0.00	
		2.24	5.56	2.48	
		2.24	4.24	1.89	
		1.95	2.12	1.09	
		5.25	0.00	0.00	
		7.94	0.00	0.00	
		10.2	0.00	0.00	
		5.24	0.00	0.00	
		2.69	5.81	2.16	
		5.24	0.00	0.00	
		8.09	0.00	0.00	
		4.80	0.00	0.00	
		5.39	0.00	0.00	
		5.10	0.00	0.00	
America	Breast milk	1.21×10^{2}	5.00	4.13×10-2	24
		47.2	5.00	0.106	
		35.1	5.00	0.142	
		1.35×10^{2}	5.00	3.70×10 ⁻²	
		35.9	5.00	0.139	
		1.99×10^{2}	5.00	2.51×10 ⁻²	
		1.60×10^{2}	5.00	3.13×10 ⁻²	
		1.86×10^{2}	28.6	0.154	
		1.35×10^{2}	5.00	3.70×10 ⁻²	
		89.9	5.00	5.56×10 ⁻²	
		1.41×10^{2}	5.00	3.55×10 ⁻²	
		1.06×10^{2}	5.00	4.72×10 ⁻²	
		1.32×10^{2}	5.00	3.79×10 ⁻²	
		6.03×10^{2}	5.00	8.29×10 ⁻³	
		4.63×10^{2}	5.00	1.08×10 ⁻²	
		88.1	5.00	5.68×10 ⁻²	
		1.04×10^{2}	5.00	4.81×10 ⁻²	
		90.8	5.00	5.51×10 ⁻²	
		9.17×10^{2}	5.00	5.45×10 ⁻³	
		5.54×10^{2}	5.00	9.03×10 ⁻³	
		2.50	5.00	2.00	
		7.99×10^{2}	5.00	6.26×10 ⁻³	

Country	Туре	ННСВ	HHCB-lac	Ratio	Reference
		2.61×10^{2}	5.00	1.92×10 ⁻²	
		97.9	5.00	5.11×10 ⁻²	
		4.15×10^{2}	5.00	1.20×10 ⁻²	
		44.1	5.00	0.113	
		1.57×10^{2}	5.00	3.18×10 ⁻²	
		2.43×10^{2}	5.00	2.06×10 ⁻²	
		2.02×10^{2}	5.00	2.48×10-2	
		1.36×10^{2}	5.00	3.68×10 ⁻²	
		4.49×10^{2}	5.00	1.11×10 ⁻²	
		2.33×10^{2}	5.00	2.15×10 ⁻²	
		62.9	5.00	7.95×10 ⁻²	
		21.7	5.00	0.230	
		2.67×10^{2}	5.00	1.87×10 ⁻²	
		68.3	5.00	7.32×10 ⁻²	
		47.9	5.00	0.104	
		1.00×10^{2}	5.00	5.00×10-2	
		59.4	88.0	1.48	
China	Breast milk	22.9	12.3	0.538	25
		28.5	8.97	0.315	
		4.42	1.75	0.396	
		11.5	10.1	0.880	
		12.8	7.28	0.567	
		17.8	5.59	0.315	
		13.3	9.52	0.718	
		11.1	8.04	0.726	
		18.7	9.30	0.497	
		18.3	13.9	0.759	
		58.2	33.4	0.574	
		11.4	8.02	0.702	
		19.1	21.4	1.12	
		15.1	10.7	0.711	
		15.9	3.08	0.194	
		8.97	3.21	0.358	
		22.8	7.10	0.311	
		22.5	6.09	0.270	
		11.6	9.09	0.787	
		12.1	9.76	0.804	
		8.62	7.75	0.899	
		14.5	12.9	0.886	
		37.5	11.7	0.311	
		15.1	9.55	0.633	

Country	Туре	ННСВ	HHCB-lac	Ratio	Reference
China	Breast milk	19.6	7.40	0.378	26
		12.7	6.90	0.543	
		31.1	18.1	0.582	

References

- 1. J. L. Reiner and K. Kannan, A survey of polycyclic musks in selected household commodities from the United States, *Chemosphere*, 2006, **62**, 867-873.
- 2. Y. Lu, T. Yuan, W. Wang and K. Kannan, Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China, *Environ. Pollut.*, 2011, **159**, 3522-3528.
- M. J. Gómez, S. Herrera, D. Solé, E. García-Calvo and A. R. Fernández-Alba, Spatio-temporal evaluation of organic contaminants and their transformation products along a river basin affected by urban, agricultural and industrial pollution, *Sci. Total Environ.*, 2012, **420**, 134-145.
- 4. J. A. Andresen, D. Muir, D. Ueno, C. Darling, N. Theobald and K. Bester, Emerging pollutants in the North Sea in comparison to Lake Ontario, Canada, data, *Environ. Toxicol. Chem.*, 2007, **26**, 1081-1089.
- S. Tasselli, E. Valenti and L. Guzzella, Polycyclic musk fragrance (PMF) removal, adsorption and biodegradation in a conventional activated sludge wastewater treatment plant in Northern Italy, *Environ. Sci. Pollut. Res.*, 2021, 28, 38054-38064.
- 6. J. Reiner, J. Berset and K. Kannan, Mass flow of polycyclic musks in two wastewater treatment plants, *Arch. Environ. Contam. Toxicol.*, 2007, **52**, 451-457.
- 7. K. Bester, Polycyclic musks in the Ruhr catchment area—transport, discharges of waste water, and transformations of HHCB, AHTN and HHCB-lactone, *J. Environ. Monit.*, 2005, **7**, 43-51.
- 8. J.-D. Berset, T. Kupper, R. Etter and J. Tarradellas, Considerations about the enantioselective transformation of polycyclic musks in wastewater, treated wastewater and sewage sludge and analysis of their fate in a sequencing batch reactor plant, *Chemosphere*, 2004, **57**, 987-996.
- 9. K. Bester, Retention characteristics and balance assessment for two polycyclic musk fragrances (HHCB and AHTN) in a typical German sewage treatment plant, *Chemosphere*, 2004, **57**, 863-870.
- Y. Liu, F. Li, H. Li, Y. Tong, W. Li, J. Xiong and J. You, Bioassay-based identification and removal of target and suspect toxicants in municipal wastewater: Impacts of chemical properties and transformation, *J. Hazard. Mater.*, 2022, 437, 129426.
- K. Juksu, Y.-S. Liu, J.-L. Zhao, L. Yao, C. Sarin, S. Sreesai, P. Klomjek, A. Traitangwong and G.-G. Ying, Emerging contaminants in aquatic environments and coastal waters affected by urban wastewater discharge in Thailand: an ecological risk perspective, *Ecotoxicol. Environ. Saf.*, 2020, 204, 110952.
- N. Ramírez, F. Borrull and R. M. Marcé, Simultaneous determination of parabens and synthetic musks in water by stir-bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry, *J. Sep. Sci.*, 2012, **35**, 580-588.
- 13. S. Tasselli and L. Guzzella, Polycyclic musk fragrances (PMFs) in wastewater and activated sludge: analytical protocol and application to a real case study, *Environ. Sci. Pollut. Res.*, 2020, **27**, 30977-30986.
- Y. Horii, J. L. Reiner, B. G. Loganathan, K. S. Kumar, K. Sajwan and K. Kannan, Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA, *Chemosphere*, 2007, 68, 2011-2020.
- T. Kupper, J.-D. Berset, R. Etter-Holzer, R. Furrer and J. Tarradellas, Concentrations and specific loads of polycyclic musks in sewage sludge originating from a monitoring network in Switzerland, *Chemosphere*, 2004, 54, 1111-1120.
- 16. C. Lange, B. Kuch and J. W. Metzger, Occurrence and fate of synthetic musk fragrances in a small German

river, J. Hazard. Mater., 2015, 282, 34-40.

- 17. M. Rusconi, E. Brenna and S. Polesello, Can the ratio galaxolide-lactone: Galaxolide be a good tracer of wastewater in freshwaters?, *Integr. Environ. Assess. Manage.*, 2017, **13**, 214-216.
- 18. B. Tian, S. Gao, S. Huo, X. Zeng and Z. Yu, Occurrence, spatial distribution, and fate of polycyclic musks in sediments from the catchment of Chaohu Lake, China, *Environ. Monit. Assess.*, 2021, **193**, 1-11.
- 19. Y. Lu, T. Yuan, S. H. Yun, W. Wang and K. Kannan, Occurrence of synthetic musks in indoor dust from China and implications for human exposure, *Arch. Environ. Contam. Toxicol.*, 2011, **60**, 182-189.
- 20. C. Kubwabo, X. Fan, P. E. Rasmussen and F. Wu, Determination of synthetic musk compounds in indoor house dust by gas chromatography-ion trap mass spectrometry, *Anal. Bioanal.Chem.*, 2012, **404**, 467-477.
- S. Cunha, L. Trabalón, S. Jacobs, M. Castro, M. Fernandez-Tejedor, K. Granby, W. Verbeke, C. Kwadijk, F. Ferrari and J. Robbens, UV-filters and musk fragrances in seafood commercialized in Europe Union: Occurrence, risk and exposure assessment, *Environ. Res.*, 2018, 161, 399-408.
- X. Zhang, Y. Jing, L. Ma, J. Zhou, X. Fang, X. Zhang and Y. Yu, Occurrence and transport of synthetic musks in paired maternal blood, umbilical cord blood, and breast milk, *Int. J. Hyg. Environ. Health*, 2015, 218, 99-106.
- 23. J. Yin, H. Wang, J. Zhang, N. Zhou, F. Gao, Y. Wu, J. Xiang and B. Shao, The occurrence of synthetic musks in human breast milk in Sichuan, China, *Chemosphere*, 2012, **87**, 1018-1023.
- 24. J. L. Reiner, C. M. Wong, K. F. Arcaro and K. Kannan, Synthetic musk fragrances in human milk from the United States, *Environ. Sci. Technol.*, 2007, **41**, 3815-3820.
- 25. J. Yin, H. Wang, J. Li, Y. Wu and B. Shao, Occurrence of synthetic musks in human breast milk samples from 12 provinces in China, *Food Addit. Contam. Part A*, 2016, **33**, 1219-1227.
- J. Zhou, X. Zeng, K. Zheng, X. Zhu, L. Ma, Q. Xu, X. Zhang, Y. Yu, G. Sheng and J. Fu, Musks and organochlorine pesticides in breast milk from Shanghai, China: Levels, temporal trends and exposure assessment, *Ecotoxicol. Environ. Saf.*, 2012, 84, 325-333.