Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2023

Supplementary Information I (SI-I)

Combining predictive and analytical methods to elucidate pharmaceutical biotransformation in activated sludge

Leo Trostel^{1†} & Claudia Coll^{1†}, Kathrin Fenner^{1,2,*}, Jasmin Hafner^{1,2}

¹Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology

(Eawag), 8600 Dübendorf, Zürich, Switzerland

² Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland

[†]These authors contributed equally: Leo Trostel, Claudia Coll

* Corresponding Author: kathrin.fenner@eawag.ch

Phone: +41 58 765 5085

Fax: +41 58 765 5802

Contents

S1.	Literature Search	3
S2.	Prediction of Transformation Products	7
S2.1	Prediction with EAWAG-PPS	7
acce	ess upon request) using the parameters specified in Supplementary Table S2	7
S 2.2	2 Prediction with enviPath models	7
S2.3	3 Suspect list compilation	8
S3.	Biotransformation Experiments	10
S3.1	Test compounds	10
S 3.2	2 Preparation of test reactors	18
S3.3	3 Sampling	19
S 3.4	pH measurements in activated sludge experiments	19
S4.	HPLC-HRMS/MS measurements	21
S4.1	HPLC separation	21
S4.2	2 Scan Methods of HRMS	21
S	4.2.1 Initial suspect screening	21
S	4.2.2 Stepped Collision energy	22
S5.	Compound Discoverer:	22
S5.1	Workflow and Parameters: Suspect screening	22
S 5.2	2 Workflow and Parameters: Expected Compounds	25
S6.	Precision of Predictions	29
S6.1	Precision by Parents	29

S1. Literature Search

Supplementary Table S1. Detailed overview on results from the literature search. Number of TPs, precision and TP vs Parent ratios were calculated only for the TPs found through suspect screening.

Authors	Year	Substance class	Number of compounds	Inital concentration	Experimental setup	Analytical instrument	Analytica l method	Screenin g type	Prediction type	Total predicted TPs	Total number of found TPs	Number of found TPs with suspect screening only	Precision	TP vs parent ratio	Reference
Damian E. Helbling, Juliane Hollender, Hans-Peter E. Kohler, Heinz Singer and Kathrin Fenner	2010	pharmaceut icals and pesticides	12	100 µg/L	batch reactor	HPLC-MS Orbitrap	dd-MS2 with inclusion list	target and non-target	UM-PPS	1039	26	21	2.02%	2.2	10.1021/es 100970m
Damian E. Helbling, Juliane Hollender, Hans-Perter E. Kohler and Kathrin Fenner	2010	general amides, pesticides and pharmaceut icals	30	100 µg/L	batch bottle reactor	HPLC-MS Orbitrap	dd-MS2 with inclusion list	target and non-target	UM-PPS	NA	53	NA	NA	1.8	10.1021/es 101035b
Susanne Kern, Rebekka Baumgartner, Damian E. Helbling, Juliane Hollender, Heinz Singer, Martin J. Loos, René P. Schwarzenbach and Kathrin Fenner	2010	pharmaceut icals and biocides	8	100 µg/L	batch reactor	HPLC-MS Orbitrap	dd-MS2 with inclusion list	suspect	UM-PPS	two generation s	12	12	NA	1.5	https://doi. org/10.103 9/C0EM00 238K
Carsten Prasse, Manfred Wagner, Ralf Schulz, and Thomas A. Ternes	2011	pharmaceut icals	2	4 µg/L	batch bottle reactor	HPLC-MS Orbitrap and 1D/2D NMR	dd-MS2/3 top 2 without inclusion list	suspect and non- target	UM-PPS	56	9	5	8.93%	4.5	<u>https://doi.</u> <u>org/10.102</u> <u>1/es103732</u> ¥
Elisabeth Müller, Walter Schüssler, Harald Horn, Hilde Lemmer	2013	pharmaceut icals	1	10 mg/L	batch bottle reactor	LC-MS Q- Trap hybrid triple- quadrupole	additional GC- MS/MS	suspect	UM-PPS	NA	2	2	NA	2.0	https://doi. org/10.101 6/j.chemos phere.2013. 02.070
Sebastian Huntscha, Thomas B. Hofstetter, Emma L. Schymanski, Stephanie Spahr, and Juliane Hollender	2014	benzotriazo les	3	0.5-2.4 mg/L	batch bottle reactor	UHPLC- MS Orbitrap	dd-MS2 with inclusion list	suspect and non- target	UM-PPS	three generation s	13	NA	NA	4.3	<u>https://doi.</u> <u>org/10.102</u> <u>1/es405694</u> <u>Z</u>
Thomas Letzel, Anne Bayer, Wolfgang Schulz, Alexandra Heermann, Thomas	2015	pharmaceut icals	5	1-50 µg/L	batch reactor and waste water samples	RPLC-ESI- QqTOF- MS, RPLC-	full-scan with MS/MS	target, suspec and non- target	EAWAG- BBD/PPS	132	6	6	4.55%	1.2	https://doi. org/10.101 6/j.chemos

Lucke, Giorgia Greco, Sylvia Grosse, Walter Schüssler, Manfred Sengl, Marion Letzel						HILIC- ESI-TOF- MS, RPLC-ESI- QqQ-MS									phere.2015. 06.083
Tina Kosjek, Noelia Negreira, Miren López de Alda, Damià Barceló	2015	pharmaceut icals	1	1 mg/L	batch bottle reactor	UHPLC- MS Orbitrap	dd-MS2 top 5	suspect and non- target	UM-PPS	NA	9	8	NA	9.0	https://doi. org/10.101 6/j.chemos phere.2014. 04.081
Pablo Gago-Ferrero, Emma L. Schymanski, Anna A. Bletsou, Reza Aalizadeh, Juliane Hollender, Nikolaos S. Thomaidis	2015	pharmaceut icals	173	unspiked	waste water samples	UHPLC- QTOF-MS	dd-MS2	suspect and non- target	Metabolite Predict	284	47	13	4.58%	0.3	https://doi. org/10.102 1/acs.est.5b 03454
Rebekka Gulde, Ulf Meier, Emma L. Schymanski, Hans- Peter E. Kohler, Damian E. Helbling, Samuel Derrer, Daniel Rentsch, and Kathrin Fenner	2016	pharmaceut icals, pesticides and wastewater -derived chemicals	19	120 µg/L	batch bottle reactor	HPLC-MS Orbitrap	dd-MS2 with inclusion list	suspect and non- target	EAWAG- BBD/PPS, metaprint2 D	170	101	33	19.41%	5.3	https://doi. org/10.102 1/acs.est.5b 05186
Vasiliki G.Beretsou, Aikaterini K. Psoma, Pablo Gago-Ferreroa, Reza Aalizadeh, Kathrin Fenner, Nikolaos S. Thomaidis	2016	pharmaceut icals	1	2 mg/L	batch bottle reactor	UHPLC- QTOF-MS	dd-MS2 with inclusion list	suspect and non- target	EAWAG- BBD/PPS, Metabolite Predict	NA	14	12	NA	14.0	<u>https://doi.</u> org/10.101 <u>6/j.watres.2</u> 016.07.029
Thomas Letzel, Sylvia Grosse, Wolfgang Schulz, Thomas Lucke, Angela Kolb, Manfred Sengl, and Marion Letzel	2016	pharmaceut icals	1	10-40 µg/L	batch reactor and waste water samples	RPLC-ESI- QqTOF- MS, RPLC- HILIC- ESI-TOF- MS, RPLC-ESI- QqQ-MS	full-scan with MS/MS	target, suspec and non- target	EAWAG- BBD/PPS	62	4	3	4.84%	4.0	10.1021/bk -2016- 1241.ch006
Tina Kosjek, Noelia Negreira, Ester Heath, Miren López de Alda, Damià Barceló	2018	pharmaceut icals	1	1 mg/L	batch bottle reactor	UHPLC- MS Orbitrap	dd-MS2 top 5	suspect	EAWAG- BBD/PPS	14	11	4	28.57%	11.0	http://dx.do i.org/10.10 16/j.scitote nv.2017.08. 061
Stefan Achermann, Per Falås, Adriano Joss, Cresten B. Mansfeldt, Yujie Men, Bernadette	2018	micropollut ants	93	6 mg/L	batch reactor	HPLC-MS Orbitrap	dd-MS2 with inclusion list	suspect	EAWAG- BBD/PPS	219	75	75	34.25%	0.8	<u>10.1021/ac</u> <u>s.est.8b027</u> <u>63</u>

Vogler, and Kathrin Fenner															
Michael T. Zumstein, Damian E. Helbling	2019	pharmaceut icals	6	100 µg/L	batch reactor	HPLC-MS Orbitrap	dd-MS2 with inclusion list	suspect	EAWAG- BBD/PPS	2 or 3 generation s	16	16	NA	2.7	https://doi. org/10.101 6/j.watres.2 019.02.024
Tjasa Gornik, Ana Kovacic, Ester Heath, Juliane Hollender, Tina Kosjek	2020	pharmaceut icals	1	1 μg/L - 1 mg/L	batch reactor and pilot WWT bioreactor	HPLC-MS Orbitrap	dd-MS2 top 7 with inclusion list	suspect and non- target	EAWAG- BBD/PPS	3 generation s	10	NA	NA	10.0	https://doi. org/10.101 6/j.watres.2 020.115864
Rebecca A. Trenholm, Brett J. Vanderford, Narasimman Lakshminarasimman, Drew C. McAvoy and Eric R. V. Dickenson	2020	micropollut ants	3	1 mg/L	batch bottle reactor	LC-QTOF- MS	no MS2	suspect	EAWAG- BBD/PPS	40	9	9	22.50%	3.0	10.1061/(A SCE)EE.19 43- 7870.00016 91
Xuebing Wang, Nanyang Yu, Jingping Yang, Ling Jin, Huiwei Guo, Wei Shi, Xiaowei Zhang, Liuyan Yang, Hongxia Yu, Si Wei	2020	pesticides and pharmaceut icals	60	unspiked	waste water samples	LC-QTOF- MS and LC- quadrupole -MS/MS	dd-MS2 top 20	suspect	EAWAG- BBD/PPS	NA	57	21	NA	1.0	https://doi. org/10.101 6/j.envint.2 020.105599
Gang Wu, Jinju Geng, Yufei Shi, Liye Wang, Ke Xu, Hongqiang Ren	2020	pharmaceut icals	1	500 µg/L	batch bottle reactor	LC-QTOF- MS	dd-MS2	suspect	EAWAG- BBD/PPS, Pathpred	NA	4	4	NA	4.0	https://doi. org/10.101 6/j.watres.2 020.116158
Juliet Kinyua, Aikaterini K. Psoma, Nikolaos I. Rousis, Maria-Christina Nika, Adrian Covaci, Alexander L. N. van Nuijs and Nikolaos S. Thomaidis	2021	psychoacti ve substances	2	2 mg/L	batch reactor	LC-QTOF- MS	DIA MS2	suspect	EAWAG- BBD/PPS, Metabolite Predict	NA	10	10	NA	5.0	10.3390/me tabo110200 66
Wenwen Cai, Pu Ye, Bin Yang, Zhouqi Shi, Qian Xiong, Fangzhou Gao, Yousheng Liu, Jianliang Zhao, Guangguo Ying	2021	fungicides	2	500 µg/L	batch bottle reactor	HPLC- QTOF-MS	dd-MS2 with inclusion list	suspect and non- target	EAWAG- BBD/PPS, PathPred	36	10	3	8.33%	5.0	https://doi. org/10.101 6/j.jes.2020 .11.007
Yeowool Choi, Junho Jeon, Sang Don Kim	2021	triphenyl phosphate	1	100 µg/L	waste water samples	UHPLC- MS Orbitrap	dd-MS2 top 5	target, suspec and non- target	EAWAG- BBD/PPS	NA	29	4	NA	29.0	https://doi. org/10.101 6/j.watres.2 021.117201
A. B. Martínez- Piernas, P. Plaza- Bolaños, A. Agüera	2021	pharmaceut icals	20	unspiked	waste water samples	LC-QTOF- MS	DIA MS2	suspect	EAWAG- BBD/PPS	262	5	5	1.91%	0.3	<u>https://doi.</u> <u>org/10.101</u> <u>6/j.jhazmat.</u>

															<u>2021.12508</u> <u>0</u>
Aikaterini K.Psoma, Nikolaos I. Rousis, Eleni N. Georgantzi, Nikolaos S. Thomaidis	2021	pharmaceut icals	4	0.2-2 mg/L	batch bottle reactor	UHPLC- QTOF-MS	dd-MS2 with inclusion list and DIA MS2	suspect and non- target	EAWAG- BBD/PPS	NA	22	NA	NA	5.5	https://doi. org/10.101 6/j.scitoten v.2020.144 677
Rebekka Gulde, Moreno Rutsch, Baptiste Clerc, Jennifer E. Schollée, Urs von Gunten, Christa S.McArdell	2021	micropollut ants	87	10 µg/L	batch bottle reactor and waste water samples	HPLC-MS Orbitrap	dd-MS2 with inclusion list	suspect and non- target	O3-PPS	NA	84	NA	NA	1.0	<u>https://doi.</u> org/10.101 <u>6/j.watres.2</u> 021.117200
Yangping Zhang, Haifeng Zhang, Juan Wang, Zhiyong Yu, Hongyan Li, Min Yang	2021	pesticides	30	unspiked	waste water and river samples	LC-QTOF- MS	DIA MS2	suspect and target	Metabolite pilot	1400	20	18	1.29%	0.7	https://doi. org/10.101 6/j.scitoten v.2021.147 978
Stephanie L. Rich, Michael T. Zumstein, and Damian E. Helbling	2022	micropollut ants	40	100 µg/L	batch bottle reactor	HPLC-MS Orbitrap	dd-MS2 with inclusion list	suspect	EAWAG- BBD/PPS	227	46	46	20.26%	1.2	https://doi. org/10.102 1/acs.est.1c 06429

S2. Prediction of Transformation Products

Transformation products were predicted using EAWAG-PPS and enviPath. The pathway prediction algorithm in enviPath is different from the original algorithm implemented in EAWAG-PPS (Supplementary Figure S1).

S2.1 Prediction with EAWAG-PPS

EAWAG-PPS was run in Batch mode (https://test.eawag-bbd.ethz.ch/rxnmulti/

access upon request) using the parameters specified in Supplementary Supplementary Table S.

Supplementary Table S2. Settings used for TP prediction in the EAWAG-PPS/BBD

Parameter	Value
Relative reasoning	True
Immediate rules	True
Likelihood cutoff	Neutral
Recursion depth	3

S2.2 Prediction with enviPath models

The TP predictions with enviPath were performed using a Python script available on GitHub (<u>https://github.com/FennerLabs/TP_predict/blob/main/TP_prediction/find_best_TPs.py</u>). The following relative reasoning models were used:

- ML-ECC-BBD
- ML–ECC–BBD+SOIL
- ML-ECC-BBD+SLUDGE
- ML-ECC-BBD+SOIL+SLUDGE

The relative reasoning models are publicly available at https://envipath.org/package/308fc905-f84d-

410b-b3ca-ed888d59dd33.

The predicted pathways were stored for each model separately as a data package on enviPath for visualization:

- Package for results using BBD ML ECC 2022 model: https://envipath.org/package/0915fad3-b889-4aa8-ac98-0707b717be57
- Package for results using BBD+SOIL ML ECC 2022 model:

https://envipath.org/package/80cf58b1-21e2-4c28-9cc6-dc69c6445bdf

- Package for results using BBD+SLUDGE ML ECC 2022 model: https://envipath.org/package/7d64aa85-2e3c-413f-a538-4d5f2bfd4662
- Package for results using BBD+SOIL+SLUDGE ML ECC 2022 model: https://envipath.org/package/11f2acd5-5209-4d49-ad77-93f6f6965886

S2.3 Suspect list compilation

To compile the suspect list from the TP prediction output, the corresponding python script on GitHub was used (https://github.com/FennerLabs/TP_predict/tree/main/File_conversion/Prediction_output_to_mass_list). The following programming languages and libraries were used: Python version 3.6.13, *RDKit* version 2020.09 (used for mass calculation), *Pandas* version 1.1.5 (used for export as csv files), and *PubChemPy*

version 1.0.4 (used for CAS number search).

A Pathway search with generation threshold

B Pathway search with **TP number** threshold

Supplementary Figure S1. Pathway search algorithms used for TP prediction. A In EAWAG-PPS, a breadth-first graph expansion explores predicted nodes one generation after the other. Newly generated nodes are pruned based on the inclusion criterion. When the generation threshold i_{max} is reached, the network expansion stops. In enviPath, this type of expansion is available with a relative reasoning threshold probability for node pruning, but not used in this work. B The probabilities assigned to each reaction in enviPath allow for a weight-biased graph traversal, where nodes with high probability are added to the network before nodes with low probability. This type of pathway search yields the top k TPs with the highest probability to be observed according to the relative reasoning model. The maximum number of TPs to be found is specified as n_{max} . In this work, the weight-biased graph expansion is used for the enviPath models.

S3. Biotransformation Experiments

S3.1 Test compounds

Supplementary Table S3. Selected APIs for the biotransformation tests, short name for identification, drug class, main manufacturing company and properties.

API	Short name	Drug class	log Koc*	log P**	Charge**
Acalabrutinib	Aca	Antineoplastic	4.40	2.56	neutral
Aliskiren	Ali	Antihypertensive	NA	3.12	cation
Amlodipine	Aml	Cardiovascular	1.57	1.64	cation
			4.51	4.54	
Atazanavır	Ata	Antiretroviral	4.51	4.54	neutral
Atomoxetine	Atm	Psychostimulant	3.56	3.81	cation

0					
он					
CI CI			4.40		
Atovaquone	Atv	Antimalarial	4.49	5.00	anion
Budesonide	Bud	Corticosteroid	4.73	2.73	neutral
F					
Canagliflozin	Can	Antidiabetic	4.37	3.52	neutral
Ceritinib	Ceri	Antineoplastic	5.39	5.81	cation
Clopidogrel	Clp	Antiplatelet	3.17	4.03	neutral
					neutral-
Clotrimazol	Clt	Antifungal	3.92	5.84	cation
СІ-СІ-ОН					
Dapagliflozin	Dap	Antidiabetic	2.31	2.11	neutral

ССПО И И И И И И И И И И И И И И И И И И И					neutral-
Dasatinib	Das	Antineoplastic	2.99	4.01	cation
OH H H H H					
Dienogest	Die	Contraceptive	5.18	2.31	neutral
Dolutegravir	Dol	Antiviral	NA	1.10	neutral
Duloxetine	Dul	Antidepressant	3.47	4.20	cation
Ffavirenz	Ffa	Antiviral	3 17	5.15	neutral
			5.17		nouuu
Блана Балана Бала	Eze	Antilipemic	4.92	4.56	neutral
Fexofenadine	Fex	Antihistamine	5.20	2.94	zwitterion

		Multiple			
Fingolimod	Fin	Sclerosis Agents	3.28	4.06	cation
		0			
S NH					
Hydrochlorothiazide	Hyd	Diuretics	1.72	-0.58	neutral
		Angiotensin			. 1
Irbasartan	Irb	II Receptor	1 22	1 17	neutral-
	110	Antagonists	4.55	4.47	amon
, <u> </u>					
H H					
0					
Keto-desogestrel	Ket	Contraceptive	5.35	3.60	neutral
C					
Ö V					
		Anti-			
Lumiracoxib	Lum	inflammatory	3.14	4.31	anion
H ₂ N N N					
ŃН ₂ ŇН					
Metformin	Met	Antidiabetic	0.98	-0.92	cation
Ň					neutral-
Mirtazapine	Mir	Antidepressant	2.81	3.21	cation

			1		
Mometasone	Mom	Corticosteroid	4.96	5.06	neutral
//		Opioid			neutral-
Naloxegol	Nal	Antagonists	4.94	1.36	cation
					neutral-
Nilotinib	Nil	Antineoplastic	5.40	5.36	cation
					neutral-
Olanzapine	Ola	Antipsychotic	2.71	3.39	cation
Omeprazole	Ome	Antiulcer	2.97	2.43	neutral
Orlistat	Orl	Weight Loss	4 32	8 11	neutral
I OIIIstat	I UII	I WEIGHT LOSS	1 4.32	0.11	neuual

HN_OH					
Panobinostat	Pan	Antineoplastic	1.79	-3.85	zwitterion
O NH O NH					
Pemetrexed	Pem	Antineoplastic	NA	0.43	anion
CI-H	Pio	Hypoglycemic Agents	4.14	3.40	neutral- anion
					neutral-
Quetiapine	Que	Antipsychotic	3.05	2.81	cation
Regorafenib	Reg	Antineoplastic	5.18	4.49	neutral

Ridaforolimus	Rid	Antineoplastic	NA	7.25	neutral
		Alzheimer			
Rivastigmine	Riv	Disease Agents	2.87	2.41	cation
Rosuvastatin	Ros	Antilipemic	1 54	1 92	anion
		Erectile			
Tadalafil	Tad	Dysfunction	4.79	1.64	neutral
H—CI					
Terbinafine	Ter	Antifungal	3.27	5.53	cation

The spike mixture containing all APIs (20 mL, 10 mg/L (\pm 8%) for each parent, in EtOH) was prepared gravimetrically by adding each stock solution (about 160 mg each, 1 g/L in MeOH or EtOH) of the respective substance.

S3.2 Preparation of test reactors

Activated sludge (4 L, total suspended solids (TSS) 2.8 g/L, and 1.27 mg/L dissolved O₂ at 15.4 °C at the time of collection) was collected from the ARA-Neugut (Dübendorf, Switzerland) and immediately transported to Eawag laboratories. The activated sludge (3 x 700 mL) was centrifuged for 1 min at 2'000 rpm and afterwards the supernatant (3 x 400 mL) was separated. The remaining volume (3 x 300 mL) was used for the incubations with high biomass (HB, TSS 7.1 g/L). The supernatant (600 mL) was then poured to native sludge (150 mL, not centrifuged) to prepare the incubations with dilute biomass (DB, TSS 0.6 g/L). Sludge suspensions (6 x 50 mL for HB and DB) were added to 100 mL biotransformation (BT) bottles and unspiked control (UC) reactors. The remaining supernatant (200 mL) was filtered with 0.2 µm filter paper and the filtrate (2 x 50 mL) was added to 100 mL abiotic control (AB) bottles. DB and HB suspensions (2 x 50 mL each) were further added to 100 mL sorption control (SC) bottles. AB bottles were once autoclaved (121 °C and 103 kPa for 20 min), whereas SC bottles were autoclaved twice. All bottle incubations were stirred and air (0.5 bar) was bubbled through. Additionally, CO₂ (1 bar) was bubbled through half of the reactors. All reactors were equilibrated for 1 h prior to incubating with the API mixtures.

Supplementary Table S4. Experimental setup and number of biotransformation and control reactors (HB = high biomass with TSS = 7.1 g/L, DB = dilute biomass with TSS = 0.6 g/L, native sludge with TSS = 2.8 g/L).

	Biotransform	nation	Abiotic control	Sorption control		Unspiked	d control
Treatment	HB	DB		HB	DB	HB	DB
pH-low	2	2	1	1	1	1	1
pH-high	2	2	1	1	1	1	1

The addition of APIs was performed as follows: the spike mixture containing all the APIs (40 μ L, 10 mg/L) was added to 16 empty 100 mL amber glass bottle. The solvent was allowed to evaporate over 15 min and then the contents from the equilibrated sludge bottles was transferred to the spiked

amber bottles. The resulting final concentration was thus 8 μ g/L for each parent compound. The remaining four UC reactors were not incubated with APIs.

S3.3 Sampling

Samples were collected at time points 0 h, 2h, 4 h, 9 h, 24 h, 30 h, 48 h, 54 h and 72 h. Aliquot (1.5 mL) was transferred to 2 mL *Eppendorf* tubes and centrifuged for 10 min at 15'000 rpm. Supernatant (0.8 mL) was added to a 1.5 mL muffled amber vial (500 °C in 2 h, hold for 4.5 h) and stored at 4 °C until 72 h after first sampling. Samples were stored at -20 °C after the experiment. Triplicates were sampled for 0 h from all reactors and 30 h for BT reactors. Weight of reactors were determined before, after taking aliquots, and at the start and end of the day to calculate evaporation losses. Nanopure water was added to compensate for losses.

S3.4 pH measurements in activated sludge experiments

The pH was monitored by measuring it twice a day (pH Meter 913; Metrohm, Herisau, Switzerland).

Supplementary Figure S2. Monitoring of pH in biotransformation (BT) reactors with high biomass (HB) or diluted biomass (DB) over the course of the experiment (A) and unspiked control (UC) reactors (B).

Supplementary Figure S3. Monitoring of pH in abiotic (AB) and sorption control (SC) reactors, (A) and (B), respectively, over the first 20 hours of the experiment .

S4. HPLC-HRMS/MS measurements

S4.1 HPLC separation

HPLC-grade (nanopure) water was collected from *Arium pro DI Ultrapure Water System* (*Satorius*, Gottingen, Germany). Samples of 100 μ L on-flow with an auto-sampler (mobile phase: H2O/MeOH + 0.1% HCOOH following flow gradient; flow rate 300 μ L min–1, MeOH purchased from Fisher Scientific) were injected into HPLC column (*Atlantis T3* with *VanGuard* pre-column, 3.0 x 150 mm, C18, particle size: 3 μ m). For the liquid chromatography, initial conditions for the mobile phase composition were set at 95:5 water/methanol and were maintained at this condition for 1 min. Then, the methanol fraction was increased to 5:95 water/methanol over 16 min and held at this composition for 8 min. Initial conditions were reestablished after 0.1 min and maintained for 4.9 min before starting the next analysis.

S4.2 Scan Methods of HRMS

HPLC was coupled to an electrospray ionization high-resolution mass spectrometer QExactive Plus (*Thermo Fisher Scientific*, Bremen, Germany). Ion source parameters: spray voltage 3.5 kV, capillary temperature 320°C, sheath gas 32 L min–1, s-lens RF level 50.0; full scan MS with data-dependent MS²; mass calibration <0.5 ppm accuracy in (+/-)-ESI with in-house calibration solution.

S4.2.1 Initial suspect screening

Samples (all timepoints, all treatments and controls) were measured twice (once in positive and once in negative ionizations) first acquiring MS in full scan mode at a resolution of 140,000, scan range of 100 to 1000m/z. Then data-dependent MS^2 spectra were acquired at a resolution of 17,500, maximum ion time of 50 ms, isolation window 1 m/z, dynamic exclusion of 8 s and default NCE of 30 (to be used in any intense ion that is not in the inclusion list). The inclusion list (Section S2.3, Suspect list compilation) contained the calculated mass of $[M+H]^+$ or $[M-H]^-$ ion based on molecular formula of the parents and predicted TPs and a corresponding NCE calculated with Eq 1.

S4.2.2 Stepped Collision energy

Samples (biotransformation bottles at 4 timepoints: 0h, 2h, 24h and 72h) were re-measured once first acquiring MS in full scan in positive mode at a resolution of 70,000, scan range of 100 to 1000 m/z. Then data-dependent MS^2 spectra were acquired at a resolution of 17,500, maximum ion time of 100 ms, isolation window 1 m/z, dynamic exclusion of 6 s and stepped NCE of 15, 35 and 60. The inclusion list contained the calculated mass of $[M+H]^+$ or $[M-H]^-$ ion based on molecular formula of selected predicted TPs where more fragmentation could help in improving structural identification.

S5. Compound Discoverer:

Version 3.2.0.421

S5.1 Workflow and Parameters: Suspect screening

Supplementary Figure S4. Compound Discoverer workflow for the automatic detection of transformation products.

Compound discoverer nodes		
Select Spectra Node		
Lower RT Limit [min]	2.9	
Upper RT Limit [min]	28	
Polarity Mode	Any	
Align Retention Times Node		
Alignment Model	Adaptive Curve	
Maximum shift [min]	2	
Mass Tolerance	5 ppm	
Detect Compounds Node		
Mass Tolerance	5 ppm	
Intensity Tolerance [%]	30	
S/N Threshold	3	
Min. Peak Intensity	500000	
Ions	[M+H]+1; [M+K]+1; [M+Na]+1; [M-H]-1	
Min. Element Counts	СН	
Max. Element Counts	C60 H100 Br2 Cl5 F10 N10 O20 P5 S5	
Merge Features Node		
Mass Tolerance	5 ppm	
RT Tolerance [min]	1	
Group Compounds Node		
Mass Tolerance	5 ppm	
RT Tolerance [min]	0.2	
Preferred Ions	[M+H]+1; [M-H]-1	
Fill Gaps Node		
Mass Tolerance	5 ppm	
S/N Threshold	1.5	
Mark Background Compounds	s Node	
Max. Sample/Blank	5	
Max. Blank/Sample	0	
Hide Background	True	
Search mzCloud Node		
Compound Classes	All	
Library	Autoprocessed; Reference	
DDA Search		
Identity Search	HighChem HighRes	
Match Activation Type	True	
Match Activation Energy	Match with Tolerance	
Activation Energy Tolerance	20	
Apply Intensity Threshold	True	
Similarity Search	None	
Match Factor Threshold	60	
DIA Search		
Use DIA Scans for Search	False	

Supplementary Table S5. Parameters used for the used Compound Discoverer workflow.

Max. Isolation Width [Da]	500	
Match Activation Type	False	
Match Activation Energy	100	
Apply Intensity Threshold	False	
Match Factor Threshold	20	
Search ChemSpider Node		
Database(s)	KEGG	
Search Mode	By Formula or Mass	
Mass Tolerance	5 ppm	
Max. # of results per compound	20	
Max. # of Predicted	3	
Compounds	5	
Predict Compositions Node		
Mass Tolerance	5 ppm	
Min. Element Counts	СН	
Max. Element Counts	C60 H100 Br2 Cl5 F10 N10 O20 P5 S5	
Min. RDBE	0	
Max. RDBE	40	
Min. H/C	0.1	
Max. H/C	3.5	
Max. # Candidates	10	
Intensity Tolerance [%]	30	
Intensity Threshold [%]	0.1	
S/N Threshold	3	
Use Dynamic Recalibration	True	
Use Fragments Matching	True	
Assign Compound Annotations	Node	
Mass Tolerance	5 ppm	
Data Source #1	MassList Search	
Data Source #2	Predicted Composition	
Data Source #3	mzCloud Search	
Data Source #4	ChemSpider Search	
Use mzLogic	True	
Use Spectral Distance	True	
Sfit Threshold	20	
Sfit Range	20	
Search Mass Lists Node		
Mass Lists	Import from csv	
Use Retention Time	True	
RT Tolerance [min]	2	
Mass Tolerance	5 ppm	
Search Neutral Losses Node		
High Acc. Mass Tolerance	2.5 mmu	
Low Acc. Mass Tolerance	0.5 Da	
Neutral Losses	Br, C2 H3, C2 H3 O2, C2 H4 N, C2 H5, C2 H5 O, C2 H6 O, C2 H6, C3 H7, C4 H10, C4 H7, C4 H8, C4 H9, C H2, C2 H2 O, C	

	H3, C3 H6, C2 H3 O, C2 H4 O2, C H3 O, C H4 O, C H4, C H5 O, Cl, C O, C O2, C O3, C H2 N O, C6 H10 O4, F, C6 H10 O7, C6 H8 O6, H, H2, C2 H4, C H2 O, H2 O, H2 S, H Br, C2 H2, H Cl, C H N, C6 H10 O5, C12 H20 O10, H F, H I, H S, I, H3 N, N O, N O2, H O, C5 H8 O4, C11 H18 O9, C10 H16 O8, C5 H7 N O3, S, O S, O2 S, C10 H15 N3 O6
S/N Threshold	3
Use DIA Scans for Search	FALSE
Differential Analysis	
Log10 Transform Values	TRUE

Supplementary Table S6. Parameters that were used for the built-in in silico fragmentation tool (FISh Score).

Parameter	Settings
Annotate full spectrum tree	True
Use general rules	True
Use fragmentation libraries	True
Allow aromatic cleavage	True
Max. Depth	5
High accuracy mass tolerance	2.5 mmu
Low accuracy mass tolerance	0.5 Da
S/N threshold	3

S5.2 Workflow and Parameters: Expected Compounds

Supplementary Figure S5. Compound Discoverer workflow for the prediction of TPs resulting from conjugation reactions and their detection.

Supplementary Table S7. Used parameters for the Compound Discoverer workflow for the prediction of TPs resulting from conjugation reactions and their detection.

Compound discoverer nodes		
Select Spectra Node		
Lower RT Limit [min]	2.9	
Upper RT Limit [min]	28	
Polarity Mode	Any	
Generate Expected Compounds Node		
Compounds	All parent imported as .sdf files	
Dealkylation		
Apply Dealkylation	FALSE	
Apply Dearlyation	FALSE	
Max. # of Steps	1	
Min. Mass [Da]	100	

Transformation		
Max. # of Steps	2	
Max. # Phase II	1	
Others		
Phase I		
Phase II	Acetylation, Formylation, Fumarylation, Malonylation, Succinylation	
Ions	M+H, M+H-H2O, M+K, M+Na, M+NH4, M-H, M-H-H2O	
Find Expected Compounds No	de	
Avg Peak width [min]	0	
Intensity Threshold [%]	0.1	
Intensity Tolerance [%]	30	
Mass Tolerance	5 ppm	
Min. # Isotopes	2	
Min. Peak Intensity	500000	
S/N Threshold	3	
Group Expected Compounds N	Node	
RT Tolerance [min]	0.2	
Preferred Ions	M+H, M-H	
Align Retention Times Node		
Alignment Model	Adaptive Curve	
Maximum shift [min]	2	
Mass Tolerance	5 ppm	
Merge Features Node		
Mass Tolerance	5 ppm	
RT Tolerance [min]	1	
Group Compounds Node		
Mass Tolerance	5 ppm	
RT Tolerance [min]	0.2	
Preffered Ions	[M+H]+1; [M-H]-1	
Search mzCloud Node		
Compound Classes	All	
Library	Autoprocessed; Reference	
DDA Search		
Identity Search	HighChem HighRes	
Match Activation Type	True	
Match Activation Energy	Match with Tolerance	
Activation Energy Tolerance	20	
Apply Intensity Threshold	True	
Similarity Search	None	
Match Factor Threshold	60	
DIA Search		
Use DIA Scans for Search	False	
Max. Isolation Width [Da]	500	
Match Activation Type	False	

Match Activation Energy	100	
Apply Intensity Threshold	False	
Match Factor Threshold	20	
Search ChemSpide Node		
Database(s)	KEGG	
Search Mode	By Formula or Mass	
Mass Tolerance	5 ppm	
Max. # of results per compound	20	
Max. # of Predicted Compounds	3	
Search Mass Lists Node		
Mass Lists	Import from csv	
Use Retention Time	True	
RT Tolerance [min]	2	
Mass Tolerance	5 ppm	
Differential Analysis		
Log10 Transform Values	TRUE	