Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2023

SUPPORTING INFORMATION

Detection of exposed phosgene in household bleach: Development of a selective and cost-effective sensing tool

Shrabani Saha and Prithidipa Sahoo*

Department of Chemistry, Visva-Bharati University, Santiniketan, 731235, India.

E-mail: prithidipa@hotmail.com.

•

1. NMR Studies:

¹H NMR of ANO in DMSO-d₆:

Fig.S1 ¹H NMR of ANO in DMSO-d₆ (400 MHz).

¹³C NMR of ANO in DMSO-d₆:

Fig.S2 ¹³C NMR of ANO in DMSO-d₆ (100 MHz).

2. Materials and Instruments

9-anthracenecarboxaldehyde, Hydroxylamine hydrochloride, Ethanol, Triethylamine, Ethyl acetate and all other chemicals were purchased from Sigma-Aldrich Pvt. Ltd. Unless otherwise mentioned, materials were obtained from commercial suppliers and were used without further purification. Solvents were dried according to the standard procedures. Elix Millipore water was used throughout all the experiments. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz instrument. For NMR spectra and NMR titration, DMSO-d₆ was used as solvent using TMS as an internal standard. Chemical shifts are expressed in δ ppm units and ¹H–¹H and ¹H–C coupling constants in Hz. The following abbreviations are used to describe spin multiplicities in ¹H NMR spectra: s = singlet; d = doublet; t = triplet; m = multiplet. The mass spectrum (HRMS) was carried out using a micromass Q-TOF MicroTM instrument by using DMSO as a solvent. Fluorescence spectra were recorded on a Hitachi U-2910 spectrophotometer.

3. Preparation of phosgene gas. As phosgene is toxic, volatile and difficult in handling hence, during the experiments we use nontoxic, nonvolatile triphosgene (CCl₃OC(O)OCCl₃) as the precursor of phosgene gas. It generates phosgene gas in presence of triethylamine (TEA). In all our experiments we use acetonitrile as solvent.

4. The general method for UV-vis and fluorescence spectral studies. A stock solution of ANO (1 μ M) was prepared in CH₃CN. Triphosgene solution of concentration 10 μ M was prepared in CH₃CN and Triethylamine was added to the solution (1:5 molar ratio). During the titration, each time a 1 μ M solution of ANO was filled in a quartz optical cell of 1 cm optical path length and Triphosgene/TEA stock solution was added into the quartz optical cell gradually by using a micropipette. Spectral data were recorded at 1 min after the addition of Triphosgene/TEA. For all fluorescence measurements, excitations were provided at 250 nm, and emissions were collected from 370 to 600 nm.

Fig.S3 UV–Vis absorption spectra of **ANO** (1 μ M) upon gradual addition of Triphosgene/TEA (1:5 molar ratio) up to 0.6 μ M in CH₃CN.

5. Calculation of Standard Deviation (SD) and limit of detection (LOD) of ANO with phosgene:

Table S1

Blank Reading	Fluorescence	Mean (x)	Standard Deviation
(ANO)	Intensities at 429 nm		$\sum X-x ^2$
	(X)		$(\boldsymbol{\sigma}) = \sqrt{\frac{N}{N}}$
Reading 1	1240.00		
Reading 2	1239.42		
Reading 3	1240.85	1240.248	0.6829
Reading 4	1241.23		
Reading 5	1239.74		

Fig. S4 Linear fit curve of **ANO** at 429 nm with respect to phosgene concentration. Standard deviations are given by error bars where, n=3.

From the linear fit graph we get slope = -1.3454×10^9 , and SD value is 0.6829 Thus using the above formula we get the Limit of Detection = 1.52×10^{-9} M, = 1.52 nM. Therefore **ANO** can detect phosgene up to this very lower concentration by fluorescence technique.

Fig. S5 Job's plot of ANO (1 μ M) with Triphosgene (1 μ M) /TEA (1:5 molar ratio) in CH₃CN by fluorescence method, indicates 2:1 stoichiometry for ANO with phosgene. Standard deviations are given by error bars where, n=3.

7. Dependence of the fluorescence intensity of ANO with phosgene as a function of time:

Fig. S6 Fluorescence intensity of ANO decreases at 429 nm upon gradual addition of phosgene (triphosgene/TEA) with time in acetonitrile (λ_{ex} = 250 nm).

8. Competitive selectivity in presence of other analytes

Fig. S7 Histogram representing competitive fluorescence spectra of ANO+Triphosgene/TEA in presence of different analytes at 429 nm (λ_{ex} = 250 nm) in CH₃CN [1) Blank, 2) Triphosgene/TEA, 3) Triphosgene/TEA+CH₃COCl, 4) Triphosgene/TEA+POCl₃, 5) Triphosgene/TEA+SOCl₂, 6) Triphosgene/TEA+p-TsCl, 7) Triphosgene/TEA+(COCl)₂, 8) Triphosgene/TEA+HCl, 9) Triphosgene/TEA+DCP, 10) Triphosgene/TEA+DCNP, 11) Triphosgene/TEA+TFA]

9. Plausible Mechanism

Fig. S8 A plausible mechanism of interaction of ANO with phosgene

10. Mass spectrometry of ANO-D

Fig. S9 HRMS of ANO-D

11. Density Functional Theory Calculations

Fig. S10 Energy minimized structures of ANO and ANO-D from B3LYP level.

Details	ANO	ANO-D
Calculation method	B3LYP	B3LYP
Basis set	6-31G(d, p)	6-31G (d, p)
E(CAM-B3LYP) (a.u.)	-708.1731	-1528.4900
Charge, Multiplicity	0, 1	0, 1
Solvent (CPCM)	Acetonitrile	Acetonitrile

12.Table S2 Details of the geometry optimization in Gaussian 09 program.

13. TDDFT Calulation

Fig. S11 DFT optimized charge densities and the HOMO-LUMO energy gap of ANO and ANO-D

14. Table S3. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations of the low-lying excited states of all the molecules and complexes. The data were calculated by TDDFT//B3LYP/6-31G(d,p) based on the optimized ground state geometries.

Molecules	Electronic Transition	Excitation Energy ^a	f ^b	Composition ^c (%)
ANO	$S_0 \rightarrow S_8$	4.8569eV255.27 nm	0.8262	$H \rightarrow L+1 (35\%)$
	·		•	
ANO-D	$S_0 \rightarrow S_{20}$	4.7326eV 261.98 nm	0.4691	H-1 \rightarrow L+4 (46%)

^aOnly selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength.^bOscillator strength. ^cH stands for HOMO and L stands for LUMO.

15. Table S4. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

Species	E _{HOMO} (a.u)	E _{LUMO} (a.u)	ΔE(a.u)	ΔE(eV)	∆E(kcal/mol)
ANO	-0.19793	-0.02005	0.17788	4.84	111.61
ANO-D	-0.20555	-0.02254	0.18301	4.98	114.84

16. Gaseous phosgene sensing by paper strip method

Fig. S12 Filter paper strips loaded with **ANO** (1 mM) exposed to UV lamp (365 nm) to visualize fluorescence changes after 1 min (a) **ANO** alone (b) **ANO** + phosgene gas (50 ppm)

17. Paper strip-based performance of ANO in presence of phosgene with other analytes in the solution phase

Fig. S13 (a) Only ANO (b) ANO in presence of phosgene and other analytes in solution

18. Determination of conc. of phosgene in different environmental samples using fluorescence emission and the HPLC method

Table S5:

Sample	Conc. of phosgene added (µM)	Conc. of phosgene found (µM)	Recovery %	HPLC Method (µM)
Tan Watan	3	2.89	96.33	2.96
Tap Water	5	4.91	98.20	4.95
	7	6.86	98.00	6.80
Pond Water	2	1.93	96.50	1.97
	4	3.88	97.00	3.95
	6	5.85	97.50	5.79
Soil	1	0.96	96.00	0.98
	3	2.91	97.00	2.89
	5	4.86	97.20	4.95