Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2023

Figure S1. Chemical structures of RuRed and FCCP. **A)** Chemical structure of Ruthenium Red. **B)** Chemical structure of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP).

Figure S2. FCCP-induced mitochondrial uncoupling. **A)** Levels of FCCP-induced uncoupling with various FCCP concentrations. The y-axis represents the percentage increase in the oxygen consumption rate (OCR) normalized to the vehicle control. Data was analyzed via one-way ANOVA with a Dunnett's post-hoc test for multiple comparisons. *: p<0.05, ****: p<0.0001. **B)** Representative OCR traces obtained from a Seahorse XF Analyzer over the course of 24 hours, following an injection of 1 μ M FCCP. OCR is represented as % basal OCR, prior to the injection of FCCP. The decrease in both groups observed at the 12-hour time point is associated with stopping and starting the Seahorse instrument, as it is unable to run an assay longer than 12 hours.

Figure S3. Analyte levels in mitochondrial and cytosolic fractions across treatment groups. **A)** Levels of cytosolic calcium levels represented as ng of calcium per μ g of protein, as determined by a BCA assay. **B)** Levels of mitochondrial magnesium levels represented as ng of magnesium per μ g of protein, as determined by a BCA assay. **C)** Levels of cytosolic magnesium levels represented as ng of magnesium per μ g of protein, as determined by a BCA assay. **D)** Levels of mitochondrial sodium levels represented as pg of sodium per μ g of protein, as determined by a BCA assay. **D)** Levels of mitochondrial sodium levels represented as pg of sodium per μ g of protein, as determined by a BCA assay. **D)** Levels of assay. **D)** Levels of assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of assay. **D)** Levels of assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. **D)** Levels of protein, as determined by a BCA assay. For all figures, data was analyzed via one-way ANOVA.

Figure S4. Calcium supplementation does not offer a rescue to the increased cytotoxicity in combination with FCCP. Cell viability following a 48-hour exposure to 50 uM Pb² and FCCP is not rescued by Ca²⁺ supplementation. FCCP and 50 μ M Pb²⁺ corresponds to a 35% reduction in cell viability. FCCP, 50 μ M Pb²⁺, and Ca²⁺ is associated with a 20% reduction in cell viability. Data is analyzed via one-way ANOVA with a Tukey's post-hoc test for multiple comparisons between FCCP and Pb²⁺ exposure with the FCCP, Pb²⁺, and Ca²⁺ exposure (p=0.4184).

Figure S5. Calcium supplementation does not offer complete rescue of increased cytotoxicity in combination with FCCP and RuRed at 24 hours, but some protection at a 48-hour exposure to low doses of Pb²⁺. These figures are to be directly compared back to the green columns in Figure 1C and Figure 1D, which represent the original dose response curves performed in the absence of a calcium supplementation and have been reprinted in panels C and D of this figure. A) 24-hour dose response curve for a mixture of Pb²⁺, RuRed, FCCP, and a Ca²⁺ supplementation. Cell viability is significantly decreased at 25 and 50 μ M Pb²⁺ doses (25 μ M: 25%, p=0.0381 50 μ M: 35%, p=0.0399). B) 48-hour dose response curve for a mixture of Pb²⁺, RuRed, FCCP, and a Ca^{2+} supplementation. With Ca^{2+} supplementation, cell viability is no longer significantly decreased at 2, 10, and 25 µM Pb²⁺ doses, however at 50 µM Pb²⁺, there is still an observed 50% reduction in cell viability (p<0.001). Data was analyzed via one-way ANOVA with a Tukey's post-hoc test for multiple comparisons to the control. C) 24-hour dose response following exposure to Pb²⁺ and FCCP and RuRed. Exposure to a mixture of all chemicals results in a significant decrease in cell viability at multiple Pb²⁺ concentrations (25 µM: 30%, p=0.0067, 50 μM: 34%, p=0.0256). Data was analyzed via two-way ANOVA with a Dunnett's post-hoc test for multiple comparisons of each group to the control. Pb²⁺ dose: p=0.003, Additional compound: p<0.0001, interaction: p=0.3513. **D**) 48-hour dose response following exposure to Pb²⁺ and FCCP and RuRed. Exposure to a mixture of all chemicals results in a significant decrease in cell viability at multiple Pb²⁺ concentrations (2 µM: 12%, p=0.0328, 10 µM: 25%,

p=0.0234, 25 μ M: 33%, p=0.0007, 50 μ M: 40%, p=0.0008). Data was analyzed via two-way ANOVA with a Dunnett's post-hoc test for multiple comparisons of each group to the control. Pb²⁺ dose: p<0.0001, Additional compound: p<0.0001, interaction: p=0.0082. Fluorescence values recorded by the resazurin assay corresponding to the cell viability have been normalized to the control group and are presented as a percentage of the control on all graphs.