SUPPLEMENTAL MATERIAL FOR

Chemical Characterization of Microplastic Particles Formed in Airborne Waste Discharged from Sewer Pipe Repairs

Brianna N. Peterson,¹ A.C. Morales,¹ J.M. Tomlin,¹ C.G.W. Gorman,¹ P.E. Christ,¹ S.A.L. Sharpe,¹ S.M. Huston,¹ F.A. Rivera-Adorno,¹ B.T. O'Callahan,³ M. Fraund,⁴ Y. Noh,⁵ P. Pahari,⁵ A.J. Whelton,^{5,6} P.Z. El-Khoury,⁷ R.C. Moffet,⁴ A. Zelenyuk,⁸ A. Laskin.* ^{1,2}

¹Department of Chemistry, ²Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, USA

⁵Environmental Molecular Sciences Laboratory, ⁷Physical Sciences Division, ⁸Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA

⁴Sonoma Technology, Inc., Petaluma, CA, USA

⁵Lyles School of Civil Engineering, ⁶Department of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA

Table of Contents

Supplementary Note 1: Sample collection and preparation for analysis	2
Supplementary Note 2: Chemical imaging techniques used for single particle analysis.	4
Supplementary Note 3: Real-time characterization of individual aerosolized particles	6
Supplementary Note 4: Molecular characterization of bulk samples	7
Supplementary Note 5: Polymerization and oligomerization reaction pathways1	0
Supplementary Note 6: Equations and plots used for DART-HRMS analysis	3
Supplementary Note 7: Venn diagrams showing the similarities and differences betwee	'n
samples2	2
Supplementary Note 8: Table of identified compounds in DART-HRMS	25
References	5

Supplementary Note 1: Sample collection and preparation for analysis

Waste samples were collected from CIPP installations at construction sites in Sacramento, California.¹ These were X1 and X2 as identified in Morales et al., 2022.² Stainless steel air manifolds were set up at sampling sites to catch and condense the steam emission plume. Condensed samples were collected in Pyrex bottles and stored at -20 °C.¹ The styrene-based waste was collected at site using an isophthalic based polyester resin with 0.5% Trigonox® KSM and 1% di-(4-tert-butylcyclohexyl) peroxy decarbonate initiators.¹ The vinyl ester-based waste was collected at a site using EcoTek[™] L040-TNVG-33 vinyl ester resin, but no disclosed initiators.¹

Composites were cured in a custom built laboratory curing chamber as shown in Figure S1 placed inside a thermal oven within a fume hood.³ Resin impregnated felt blocks were placed on a Teflon® release film and placed in the chamber, which was sealed for the duration of curing.³ Curing was conducted under vacuum and resulted in a hard cured composite.

Figure S1. The experimental setup used to cure the composites in the laboratory setting. Panel (a) shows the schematic of the setup. Panel (b) displays a photograph of the test chamber, shown with a block of cured composite inside. Panel a is reproduced from Sendesi et al, 2020.³ Copyright 2020, Royal Society of Chemistry.

Photographs of the uncured resin, cured composite, and discharged steam laden waste emitted at the installation site are displayed in Figure S2.

Figure S2. (a) Sample vial containing styrene-based resin, (b) pieces of cured composite that was powdered and suspended in ethanol, and (c) steam-laden waste released during CIPP installation that was condensed in cold traps at field sites.

Supplementary Note 2: Chemical imaging techniques used for single particle analysis.

SERS experiments were performed using a commercial Raman microscope (LabRAM, Horiba). Suspensions of the analyte were dropcast onto a Au film (50 nm thickness) prepared using a desktop sputter coater (target: Ted Pella Inc., 99.99%). Less than 5 mW of 785 nm laser light source was focused onto the microparticles with a 100x 0.9 NA objective. Spectra were acquired for 30-60s at ~1 cm⁻¹ spectral resolution. The spectral range from 100 cm⁻¹ to 3500 cm⁻¹ was covered by combining 5 separate acquisitions of ~800 cm⁻¹ at different grating positions.

STXM-NEXAFS was used to analyze individual particles of resin, composite, and waste composition. STXM-NEXAFS is a synchrotron-based X-ray microscopy technique that raster scans the sample through a monochromatic X-ray beam focused by a Fresnel zone plate. An order sorting aperture is used between the zone plate and analyte to decrease any higher-order diffracted light.⁴ The order sorting aperture allows spectra of higher resolution to be obtained.⁴ The X-ray beam is scanned through different energy levels to produce "stacks" which take a spectral image by measuring transmitted X-rays at 96 energies between 278 to 320 eV with 1 ms dwell time. Spectral "maps" are acquired by capturing images at four fundamental energy levels: 278 eV (carbon pre-edge), 285.4 eV (C=C), 288.5 eV (-COOH), and 320 eV (carbon post-edge). The spatial resolution of STXM-NEXAFS depends on the zone plate used to focus the X-ray beam.⁴ Spot sizes of 25 nm are typically achieved and spot sizes down to 15 nm have been reported.

STXM-NEXAFS enables the acquisition of the spatially resolved information on chemical bonding and oxidation state of carbon within individual particles. When coreshell electrons absorb the soft X-rays utilized by STXMs, they undergo absorption as the electron is excited.⁴ As the X-ray beam is scanned through the energy levels, characteristic peaks occur as carbon functionalities absorb at specific energies. Information about bond hybridization is also provided by the location and intensity of both the 1s $\rightarrow \pi^*$ and 1s $\rightarrow \sigma^*$ electronic transitions. sp² bonding is π -like, while sp³ bonding will be more σ -like.⁵

STXM-NEXAFS detects the transmitted light through a sample. Beer's law is used to convert the measured transmitted light to optical density (OD_E), which is then plotted against X-ray energy to generate a spectrum for each particle.

$$OD_E = -\ln\left(\frac{I(E)}{I_0(E)} = \mu\rho t\right)$$

In this equation, $I_0(E)$ represents transmitted light in areas without particles, I(E) represents transmitted light through regions of particles, μ is the mass absorption coefficient, ρ is the mass density, and *t* is the thickness of the sample.

For individual particle analysis, an established workflow through use of MATLAB scripts was used.^{6–10} Briefly, components within a particle are classified into three categories based on defined thresholds. "Organic carbon" (OC) is defined as the difference in the OD of the carboxylic acid peak (288.5 eV) and the carbon pre-edge peak (278 eV) greater than zero. "sp²-hybridized carbon" is defined as the proportion of the intensity of the C=C peak (285.4 eV) to the total carbon absorption (OD_{320eV}-OD_{278eV}) compared to a highly oriented pyrolytic graphite (HOPG) standard¹¹ as defined below:

$$\frac{OD_{285.4}^{Sample}}{OD_{320\ eV}^{Sample} - OD_{278\ eV}^{Sample}} : \frac{OD_{320\ eV}^{HOPG} - OD_{278\ eV}^{HOPG}}{OD_{285.4\ eV}^{HOPG}} > 0.35$$

"Inorganics" (IN) are defined as regions where the ratio of OD_{278eV} (carbon preedge) to OD_{320eV} (carbon post-edge) is greater than 0.5. These different components are then superimposed onto the particle to gain a spatially resolved picture of particle composition.

Supplementary Note 3: Real-time characterization of individual aerosolized particles.

The size (vacuum aerodynamic diameter, d_{va}) and mass spectra of individual particles were measured in real-time by the single particle mass spectrometer, miniSPLAT, which is described in detail elsewhere¹². miniSPLAT uses an aerodynamic lens inlet to generate a narrow low divergence particle beam and transmit the particles into the vacuum chamber with high efficiency. Each particle exiting the lens acquires a velocity that is a narrow function of its d_{va} . Individual particles are then detected via light scattering at two optical stages placed 10.9 cm apart. The particle time-of-flight between the two stages allows the calculation of particle velocity and its d_{va} , with precision and accuracy better than 0.5%. Once a particle is detected in both optical stages, its time-of-flight is also used to generate the trigger for pulsed ablation/ionization excimer laser.¹³ Individual particle mass spectrometer (TOF-MS).

Supplementary Note 4: Molecular characterization of bulk samples.

The DART source operates by generating a corona discharge between a needle and a perforated disk electrode.¹⁴ The corona discharge produces a mixture of ions, electrons, and excited gas atoms.¹⁴ Charged particles are removed as the ions, electrons, and gas atoms pass through different metal grids within the source.¹⁵ The grid at the end of the DART source prevents ion-ion and ion-electron recombination, provides a source of electrons, and encourages analyte and reagent gas ions to move toward the inlet of the mass spectrometer.¹⁵ Ionization occurs by several possible mechanisms. In the positive mode, the ionization mechanism depends on the reagent gas used. If neon or nitrogen is used, Penning ionization will be dominant. This occurs when the metastable gas atom (M) collides with the analyte (A) and results in the radical molecular cation forming along with a ground-state reagent gas atom and an electron.¹⁶ For this to occur, the analyte must have a lower ionization potential than the energy in the metastable gas atom.

$$\mathsf{M}^* + \mathsf{A} \to \mathsf{A}^{+\bullet} + \mathsf{M} + \mathsf{e}^{-}$$

If helium gas is used, the leading mechanism for positive-ion formation will be the formation of ionized water clusters coupled with proton transfer reactions as shown below:

$$\begin{aligned} &\mathsf{He}(2^3\mathsf{S}) + \mathsf{H}_2\mathsf{O} \to \mathsf{H}_2\mathsf{O}^{+\bullet} + \mathsf{He}(1^1\mathsf{S}) + \mathsf{e} \\ &\mathsf{H}_2\mathsf{O}^{+\bullet} + \mathsf{H}_2\mathsf{O} \to \mathsf{H}_3\mathsf{O}^{+} + \mathsf{OH}^{\bullet} \\ &\mathsf{H}_3\mathsf{O}^{+} + \mathsf{nH}_2\mathsf{O} \to [(\mathsf{H}_2\mathsf{O})\mathsf{nH}]^+ \\ &[(\mathsf{H}_2\mathsf{O})\mathsf{nH}]^{+} + \mathsf{A} \to \mathsf{AH}^{+} + \mathsf{nH}_2\mathsf{O} \end{aligned}$$

This results in the formation of the protonated molecular cation of the analyte.

The ionization mechanism in the negative mode is independent of the reagent gas used but sensitivity is dependent on the type of gas used.¹⁵ He gas is the most sensitive, followed by Ne, and then N₂. Negative ionization occurs first by the production of electrons by Penning ionization or surface Penning ionization. These electrons then collide with atmospheric pressure gas and undergo electron capture by atmospheric oxygen. This

produces O_2^- which forms anions when it reacts with the sample of interest. The abstracted hydrogen molecular anion or the radical molecular anion can form. Sensitivity is dependent on the reagent gas used because electron formation via Penning ionization is more efficient as gas internal energy increases.

M^{*} + surface → M + surface + e⁻ $e^{-}_{fast} + gas \rightarrow e^{-}_{slow}$ $e^{-}_{slow} + O_2 \rightarrow O_2^{-}$ $O_2^{-} + A \rightarrow [A-H]^{-} \text{ or } A^{-}$

Different sample introductions can be used in conjunction with the DART ionization source. In these methods, temperature of the gas emitted by the DART source, heating of the sample, and a combination of both are employed. Differences in methods result in different chemical compounds being desorbed and ionized and therefore detected by the mass spectrometer. Figure S3a displays the linear rail attachment in which the QuickStrip cards are inserted. Samples are dotted on the mesh sample spots and allowed to dry before being placed in the linear rail, which moves the sample spots in front of the DART source at a controlled rate and controlled temperature gas. Figure S3b shows the lonRocket attachment in which the sample is deposited into a copper pot and then placed into the heated stage which heats the sample along a computer programmed temperature gradient.

Figure S3. (a) the DART linear rail attachment with QuickStrip sample cards and (b) the lonRocket attachment showing the heating stage and the sample holder.

After data collection, the DART-HRMS datasets were processed as described below.¹⁷ Raw data files were exported from ThermoFisher XCalibur software and deconvoluted using DeconTools AutoProcessor v2.0.7787 (<u>https://github.com/PNNL-Comp-Mass-Spec/DeconTools</u>). This procedure resulted in the lists of experimental values containing m/z values, peak intensity, and full-width-half-maximum (FWHM) for each peak in the mass spectrum. Delta FWHM was then calculated using the following equation:

$\Delta FWHM = FWHM - 0.0000036 (m/z)^{1.61}$

Outliers were removed by plotting $\Delta FWHM$ versus m/z and manually removing points that did not fall along the curve. Mass to charge values and peak intensity were imported into custom Excel macros that remove C¹³ isotopes and group homologous species based on the first-order (CH₂) and second-order (CH₂, H₂) Kendrick mass defects.¹⁸ Background subtraction for data processing was done separately for each of the DART experiments where different attachment were used. For the linear rail, the sample spectra were subtracted in the ThermoFisher Scientific X-Calibur software. Since there were two sample measurements for each gas temperature, the intensity values were averaged together after the removal of C-13 isotopes. For the lonRocket, a blank and sample mass spectra were generated. They were processed the same up to the point as which isotopes were removed. At that point, the signal-to-noise ratio was calculated by dividing the sample intensity by the blank intensity values. Any values with S/N less than 10 were removed. Molecular formulas were assigned using the MIDAS molecular formula calculator v1.1 (https://nationalmaglab.org/user-facilities/icr/icr-software) with the following elemental limitations, $C_{50}H_{<100}O_{<25}N_{0-5}S_{0-1}$ and a mass tolerance of ± 3 ppm. The assigned formulas were sorted into classes as CHO (CH and CHO), CHON (CHON and CHN), CHOS (CHOS and CHS), and CHONS (CHONS and CHNS).

Supplementary Note 5: Polymerization and oligomerization reaction pathways

Curing of the resin into composite proceeds through peroxide-initiated polymerization. A peroxide initiator begins the reaction by forming free radicals which will propagate more radicals, typically on the ethylene group of the resin monomer. The product is the resin monomer stitched together in long chains to form the corresponding polymer such as polystyrene is formed from the polymerization of styrene as seen in Figure S4a.¹⁹ The analogous polymerization mechanism for the vinyl ester-based resin is shown in Figure S4b.

Peroxide Initiator Radical Formation:

Alkene Polymerization

Figure S4. Radical initiated polymerization pathway of (a) styrene and (b) bisphenol A ethoxylate dimethacrylate.

Vinyl ester-based resin are created from an esterification reaction of an epoxy resin and acrylic or methacrylic acids as shown in Figure S5.²⁰ Common epoxy resin backbones are bisphenol A (BPA), which are used to produce strong and durable plastics.²¹

Methacrylic acid

Figure S5. The formation of vinyl ester-based resins from epoxy resin and methacrylic acid.

Because small microplastic particles do not resemble products of intended polymerization, it is likely that they are formed through environmental oligomerization reactions facilitated in drying steam laden waste droplets. These proposed reaction mechanisms are shown in Figure S6 and have been previously reported.²

Esterification:

Aldol Condensation:

Hemiacetal Formation

Peroxyhemiacetal Formation

Acetal Formation

Schiff Base Formation

Anionic Oligomerization

Figure S6. Potential oligomerization pathways occurring in the steam laden waste emissions resulting in the formation of NP particles.²²⁻²⁷

Supplementary Note 6: Equations and plots used for DART-HRMS analysis.

Figure S7. Combined linear rail and IonRocket DART-HRMS spectra for (a) S-based resin, (b) S-based composite, and (c) S-based waste. Peaks are colored by their assigned class.

Figure S8. Combined linear rail and IonRocket DART-HRMS spectra for (a) VE-based resin, (b) VE-based composite, and (c) VE-based waste. Peaks are colored by their assigned class.

Double bond equivalency was calculated using the following equation:²⁸

$$DBE = C - \frac{H}{2} + \frac{N}{2} + 1$$

The reference lines indicate compounds with structures similar to linear polyenes (DBE = 0.5° C), cata-PAHs (DBE = 0.75° C – 0.5), and fullerene-like hydrocarbons (DBE = 0.9° C).²⁹ The area below the linear polyene line is considered the "aliphatic" region, while the area between the linear polyene and fullerene-like hydrocarbon line is considered the "aromatic region."

Figure S9. DBE values plotted against the number of carbon and nitrogen atoms assigned for each species. The lines indicate reference values of linear polyenes, DBE = 0.5*C; cata-PAHs, DBE = 0.75*C – 0.5; and fullerene-like hydrocarbons, DBE = 0.9*C. Color of the symbols indicates compounds assigned based on DART(+) and DART(-) detection. Symbols are scaled to the fourth root of the intensity of the corresponding MS peak.

Van Krevelen diagrams are often used to visually analyze chemical species in complex mixtures and are created by plotting H/C versus O/C.³⁰

Figure S10. Van Krevelen diagrams of the S-based system for both DART(+) and DART(-) modes. Symbols are color-coded by maximum carbonyl ratio value and scaled to the fourth root of the intensity of the corresponding MS peak.

Figure S11. Van Krevelen diagrams of the VE-based system for both DART(+) and DART(-) modes. Symbols are color-coded by maximum carbonyl ratio value and scaled to the fourth root of the intensity of the corresponding MS peak.

The nominal oxidation state of carbon (NOSc) was calculated using an equation from Kroll et al. 2011, extended to include N and S containing compounds.^{31,32}

$$OSc = 2\frac{O}{C} + 3\frac{N}{C} + 2\frac{S}{C} - \frac{H}{C}$$

Figure S12. The nominal oxidation of carbon (NOS_c) plotted against the number of carbon and nitrogen for each assigned species for the S-based (left) and VE-based system (right). Symbols are scaled by the fourth root of the corresponding mass peak intensities and colored by class.

Volatility indicated by the saturation mass concentration ($log_{10}C^{*}_{298K}$) (µg m⁻³) was calculated using the Molecular Corridors model outlined in Li et al.³³:

$$log_{10}C *_{298K} = (n_C^0 - n_C)b_C - n_O b_O - 2\frac{n_C n_O}{n_C + n_O}b_{CO} - n_N b_N - n_S b_S$$

In this equation, n_c^0 is the reference carbon number. n_c, n_o, n_N, and n_s are the number of carbon, oxygen, nitrogen, and sulfur atoms, respectively. b_c, b_o, b_N, and b_s are the contribution of each atom to the saturation mass concentration tabulated in Li et al. (2016).³³ b_{co} is the carbon-oxygen nonideality reported in Donahue et al. (2011).³⁴

Figure S13. Molecular corridor models and percent contribution of each volatility class for the S-based system. Symbols are scaled by the fourth root of the intensity for the corresponding mass peak signal and colored by O:C ratio.

Figure S14. Molecular corridor models and percent contribution of each volatility class for the VE-based system. Symbols are scaled by the fourth root of the intensity for the corresponding mass peak signal and colored by O:C ratio.

The viscosity (η) (Pa s) was calculated using parameters tabulated in DeRieux et al. (2018) and using the equation below:³⁵

$$\eta = \eta_{\infty} e^{\frac{T_0 D}{T - T_0}}$$

where η_{∞} is equal to 10^{-5} Pa s, D is the fragility parameter assumed to be 10 based on DeRieux et al. (2018), and T₀ is the Vogel temperature calculated using the equation below.

$$T_0 = \frac{39.17T_g}{D+39.17}$$

Where T_g is the glass transition temperature as calculated using the equation below:

$$T_g = (n_C^0 + \ln(n_C))b_C + \ln(n_H)b_H + \ln(n_C)\ln(n_H)b_{CH} + \ln(n_O)b_O + \ln(n_C)\ln(n_O)b_{CO}$$

Supplementary Note 7: Venn diagrams showing the similarities and differences between samples.

Figure S15. Venn diagram showing the assigned species shared between the resin, composite, and waste for (a) the S-based system and(b) the VE-based system.

Figure S16. Venn diagrams showing the shared species between the two different systems for the (a) resin, (b) composite, and (c) waste.

Figure S17. Ven diagrams showing the HRMS features shared between the linear rail and lonRocket DART methods for each of the six samples. m/z values were rounded to four decimal points.

Supplementary Note 8: Table of identified compounds in DART-HRMS.

Table S1. Summary of identified species found in the samples along with their toxicological information.

Neutral Formula	(+) mode m/z	(+) mode error	(-) mode m/z	(-) mode error	Neutral mass	Sample found	Description of possible molecular components
C₅H8O2	101.0595 101.0597 101.0597 101.0598 101.0597	1.9 0.1 0.3 -0.8 -0.1			100.0524	VE-based resin VE-based waste S-based resin S-based composite S-based waste	Methyl methacrylate Resin monomer
C ₈ H ₈	105.0698 105.0699 105.0699 105.0698 105.0700 105.0698	0.5 -0.3 -0.3 0.3 -0.8 0.2			104.0626	VE-based resin VE-based composite VE-based waste S-based resin S-based composite S-based waste	Styrene Resin monomer
C7H6O	107.0491 107.0491 107.0491 107.0490 107.0492	0.5 0.2 0.2 0.8 -0.7			106.0419	VE-based resin VE-based composite VE-based waste S-based resin S-based composite	Benzaldehyde Oxidized derivative of styrene Decomposition product of peroxide initiators
C8H10	107.0854 107.0855 107.0856 107.0854 107.0856 107.0855	1.4 -0.1 -0.7 0.7 -0.5 0.6			106.0783	VE-based resin VE-based composite VE-based waste S-based resin S-based composite S-based waste	Ethylbenzene ³⁶ Used in the synthesis of styrene Irritant and potential carcinogen

	109.0648	0.3				VE-based resin	
	109.0649	-0.8	107.0502	0.0		VE-based composite	Benzyl alcohol ³⁷
	109.0649	-1.0	107.0501	1.0	109 0575	VE-based waste	Plasticizer and
C7H8U	109.0648	0.3			106.0575	S-based resin	solvent
	109.0649	-1.2	107.0502	0.0		S-based composite	Irritant
	107.0501	1.0				S-based waste	
	111.0440	0.4	109.0294	1.0		VE-based resin	Hydroquinone ³⁸
	111.0441	-0.7	109.0295	0.2	110.0269	VE-based composite	Used in synthesis of
$C_6H_6O_2$	111.0441	-0.1	109.0294	1.3		VE-based waste	substances
	111.0440	0.6	109.0294	1.2	110.0300	S-based resin	Suspected
	111.0442	-0.9				S-based composite	teratogen and
			109.0293	1.6		S-based waste	carcinogen
	119.0853	1.7				VE-based resin	2 proponul
Coldar	119.0855	0.1				VE-based composite	2-propertyr
	119.0856	-0.3			110 0700	VE-based waste	
C 9 H 10	119.0855	0.4			110.0702	S-based resin	toxicological
	119.0855	0.4	117.0710	-0.2		S-based composite	
	119.0856	-0.2				S-based waste	Information
	121.0647	0.8	119.0501	1.5		VE-based resin	Acetophenone
	121.0648	0.1	119.0502	0.1		VE-based composite	Oxidized derivative
	121.0648	0.2	119.0501	1.2	100 0575	VE-based waste	of styrene
	121.0647	0.7	119.0500	1.6	120.0575	S-based resin	Decomposition
	121.0648	0.1	119.0503	-0.2		S-based composite	product of peroxide
	121.0648	0.0	119.0501	0.9		S-based waste	initiators
	121.1010	1.6				VE-based resin	
	121.1012	0.1				VE-based composite	Isopropyl benzene
	121.1013	-0.7			120.0020	VE-based waste	Decomposition
C 9 H 12	121.1011	0.7			120.0939	S-based resin	product of peroxide
	121.1013	-0.9				S-based composite	initiators
	121.1012	0.1				S-based waste	

	123.0439	1.0	121.0294	1.4		VE-based resin	Benzoic acid
	123.0440	0.3	121.0295	0.3		VE-based composite	Oxidized derivative
C-H.O.	123.0441	-0.6	121.0293	1.3	100 0260	VE-based waste	of styrene
C7H6O2	123.0439	1.0	121.0293	1.4	122.0300	S-based resin	Decomposition
	123.0440	0.4	121.0295	0.3		S-based composite	product of peroxide
	123.0440	0.2	121.0294	1.2		S-based waste	initiators
	123.0803	0.9				VE-based resin	
	123.0804	0.2			122 0722	VE-based composite	Dhanydathyd
	123.0804	0.4	121.0657	1.2		VE-based waste	
C8H10U	123.0803	0.8			122.0732	S-based resin	alconor**
	123.0804	0.4				S-based composite	irritant
	123.0804	0.4	121.0658	0.6		S-based waste	
	127.1116	1.4	125.0970	1.5		VE-based resin	4-(1,1-dimethyl) cyclohexanone ⁴¹ Little to no known toxicological information
	127.1118	-0.3	125.0971	0.5		VE-based composite	
			125.0970	1.1	126 1045	VE-based waste	
C8H14O	127.1116	0.7	125.0970	1.6	120.1043	S-based resin	
	127.1118	-0.1	125.0971	0.9		S-based composite	
			125.0970	1.3		S-based waste	
	129.1274	0.1	127.1127	0.9		VE-based resin	
			127.1128	0.1		VE-based composite	4(1.1 dimothyl)
			127.1127	1.0	100 1001	VE-based waste	
C8H16O			127.1126	1.5	120.1201	S-based resin	Irritont
			127.1128	0.3		S-based composite	Initant
			127.1127	1.2		S-based waste	
	131.0854	0.7				VE-based resin	Di-vinylbenzene42
	131.0856	-0.3				VE-based composite	Styrene with
C ₁₀ H ₁₀	131.0856	-0.4			130.0783	VE-based waste	additional vinyl
	131.0855	0.4				S-based resin	group
	131.0856	-0.2	129.0710	-0.2		S-based composite	Irritant

	135.1167	1.0				VE-based resin	
	135.1168	-0.1				VE-based composite	
Cullu	135.1170	-1.4			124 1006	VE-based waste	Tert-butyl benzene43
C10⊓14	135.1167	0.7			134.1090	S-based resin	Irritant
	135.1168	0.0				S-based composite	
	135.1168	-0.3				S-based waste	
	141.1272	1.0	139.1126	1.3		VE-based resin	
	141.1273	0.6				VE-based composite	3,3,5-trimethyl
	141.1271	2.2			110 1001	VE-based waste	cyclohexanone ⁴⁴
C9H16U			139.1127	1.2	140.1201	S-based resin	Irritant
	141.1274	-0.5	139.1128	-0.1		S-based composite	Potential mutagen
			139.1128	0.6		S-based waste	Ŭ
	145 1000	0.7	142 1075	17		VE based resin	2-hydroxy-2-methyl-
	145.1222	0.7	143.1075	1.7			4-heptanone
$C_8H_{16}O_2$			143.1077	0.0	144.12	VE based waste	Little to no known
			143.1075	-0.9		S-based resin	toxicological
			143.1073	1.0			information
	149.0232	0.7				VE-based resin	
	149.0233	-0.1	147.0089	-0.9		VE-based composite	Phthalic anhydride ⁴⁵
CoHiOo	149.0234	-0.3	148.0165	-0.5	1/18 0161	VE-based waste	Resin monomer
081 1403	149.0233	0.4			140.0101	S-based resin	Plasticizers
	149.0235	-1.1	148.0167	-0.5		S-based composite	Irritant
	149.0234	-0.5	148.0165	0.4		S-based waste	
	151.0753	0.6	149.0606	1.5		VE-based resin	1 phonyl 1 hydroxy
	151.0753	0.1	149.0607	0.4		VE-based composite	
	151.0753	0.2	149.0606	1.1	150.0004	VE-based waste	2-propanone Little to no known
U9H10U2	151.0752	0.7	149.0606	1.4	100.0001	S-based resin	
	151.0754	-0.3	149.0608	0.1		S-based composite	information
	151.0753	0.3	149.0606	1.0		S-based waste	Information

C7H₅NOS	152.0164 152.0163	0.1 0.8	150.0017 150.0018 150.0017 150.0017 150.0019 150.0017	1.4 0.4 1.2 1.6 0.1 1.2	151.0092	VE-based resin VE-based composite VE-based waste S-based resin S-based composite S-based waste	2(3H)- benzothiazolone Little to no known toxicological information
C10H18O	155.1428 155.1429	1.8 0.8	153.1284 153.1285	0.8 0.0	154.1358	VE-based resin VE-based waste S-based composite S-based waste	4-tert- butylcyclohexanone Decomposition product of peroxide initiators
C ₈ H4O4	165.0183 165.0184	-0.1	163.0035 163.0038 163.0036 163.0035 163.0037 163.0036	1.2 -0.8 0.4 1.1 -0.3 0.6	164.0110	VE-based resin VE-based composite VE-based waste S-based resin S-based composite S-based waste	Styrene polyester Resin component
C14H10	179.0854 179.0854 179.0855 178.0776	0.7 0.6 0.1 0.3			178.0783	VE-based resin VE-based composite VE-based waste S-based composite	Phenanthrene ⁴⁶ Polycyclic aromatic hydrocarbon Recognized as an aquatic hazard
C12H10O2	187.0753 187.0752 187.0754 187.0753	0.5 0.6 -0.1 0.2	185.0606 185.0610 185.0608 185.0609 185.0608	0.9 -1.0 0.1 -0.8 0.2	186.0681	VE-based resin VE-based composite VE-based waste S-based composite S-based waste	Oxidized polycyclic aromatic hydrocarbon
C11H12O3	193.0858 193.0858 193.0860 193.0859	0.4 0.4 -0.2 -0.1	191.0712 191.0715 191.0713 191.0715 191.0714	0.8 -0.9 0.3 -0.7 0.1	192.0787	VE-based resin VE-based composite VE-based waste S-based composite S-based waste	Ethyl benzoylacetate ⁴⁷ Little to no known toxicological information

	193.1222	0.6	191 1078	-0.2		VE-based resin	4,7-methano- 1H-indepol
	193.1224	-0.4	191.1077	0.4		VE-based waste	hexahvdro acetate
$C_{12}H_{16}O_2$	193.1222	0.6		••••	192.1150	S-based resin	Little to no known
	193.1224	-0.8	191.1079	-0.7		S-based composite	toxicological
			191.1077	0.4		S-based waste	information
	199.0963	1.1	197.0818	0.8		VE-based resin	Ethylene glycol
	199.0964	0.2	197.0820	-0.5		VE-based composite	dimethacrylate48
	199.0965	-0.2	197.0819	-0.1	198 0892	VE-based waste	Resin monomer
010111404	199.0964	0.7	197.0817	1.1	100.0002	S-based resin	Irritant and potential
	199.0966	-0.5	197.0820	-0.3		S-based composite	mutagen
			197.0817	1.2		S-based waste	
	203.0701	0.9				VE-based resin	
C ₁₂ H ₁₀ O ₃			201.0559	-1.1		VE-based composite	Styrene-maleic
	203.0702	0.1	201.0558	-0.1	202.0630	VE-based waste	anhydride
	203.0702	0.2	201.0559	-0.9		S-based composite	Resin monomer
			201.0558	-0.3		S-based waste	
C16H10	202.0776	0.2			202.0783	S-based composite	Pyrene Polycyclic aromatic hydrocarbon
	207.0650 207.0652 207.0652	0.8 0.2 -0.2	205.0508 205.0506	-0.8 0.1	206 0570	VE-based resin VE-based composite VE-based waste	Methyl vinyl ester
	207.0651	0.5	205.0504	0.9	206.0579	S-based resin	Monomer
	207.0652	0.2	205.0507	-0.2		S-based composite	WONUNEI
			205.0506	0.1		S-based waste	
C13H22O2	211.1690 211.1692 211.1691 211.1694	1.2 0.3 0.7 -0.8	209.1547 209.1545 209.1548	-0.2 0.9 -0.5	210.1611	VE-based resin VE-based composite S-based resin S-based composite	4-tertbutyl cyclohexylacrylate ⁴⁹ Little to no known toxicological
						-	iniomation

C ₁₀ H ₁₅ NO ₂ S	214.0895	-0.5	212.0751 212.0751	-0.2 -0.3	213.0824	VE-based waste S-based waste	N-butyl-benzene sulfonamide Plasticizer Little to no known toxicological information ⁵⁰
C ₁₂ H ₂₄ O ₃			215.1650 215.1653 215.1653 215.1650 215.1653 215.1653	1.3 -0.1 0.0 1.2 -0.3 -0.2	216.1726	VE-based resin VE-based composite VE-based waste S-based resin S-based composite S-based waste	Tert-butyl peroxy-2- ethylhexanoate ⁵¹ Radical initiator
C15H24O	221.1897 221.1898 221.1899 220.1822	1.1 0.9 0.4 -0.4	219.1754 219.1754	0.0 0.0	220.1827	VE-based resin VE-based composite VE-based waste S-based resin S-based waste	Butylated hydroxytoluene Little to no known toxicological information
C ₁₂ H ₁₄ O ₄	223.0965 223.0963 223.0964 223.0963	-0.2 0.8 0.1 0.7	221.0817 221.0820 221.0820 221.0818 221.0820 221.0820	1.1 -0.6 -0.2 0.4 -0.3 -0.3	222.0892	VE-based resin VE-based composite VE-based waste S-based resin S-based composite S-based waste	Diethyl phthalate ⁵² Plasticizer Little to no known toxicological information
C ₁₆ H ₁₄ O	223.1116 223.1114 223.1118 223.1117	0.4 1.5 -0.1 0.2	221.0973	-0.5	222.1045	VE-based resin VE-based composite VE-based waste S-based composite	Oxidized polycyclic aromatic hydrocarbon

C ₁₂ H ₂₀ O ₄	229.1433 229.1434 229.1435 229.1435	0.6 0.2 -0.2 0.4	227.1288 227.1290 227.1290 227.1288 227.1291 227.1291	0.4 -0.5 -0.7 0.3 -1.2 -0.8	228.1362	VE-based resin VE-based composite VE-based waste S-based resin S-based composite S-based waste	Dibutyl maleate Monomer Little to no known toxicological information
C20H12	253.1010	0.5			252.0939	S-based composite	Benzopyrene Polycyclic aromatic hydrocarbon Suspected carcinogen
C12H14O6	255.0862 255.0864 255.0862	0.6 -0.2 0.4	253.0720 253.0719	-0.8 -0.6	254.0790	VE-based composite VE-based waste S-based composite	Bis(2-hydroxyethyl) ester Intermediate in the production of PET
C ₁₆ H ₃₂ O ₂	257.2472 257.2472 257.2472 257.2474 257.2474 257.2473 257.2476	1.3 1.0 1.0 0.6 0.9 -0.2	255.2328 255.2328 255.2331 255.2327 255.2328 255.2328 255.2331	0.6 0.6 -0.5 0.8 0.4 -0.7	256.2402	VE-based resin VE-based composite VE-based waste S-based resin S-based composite S-based waste	n-hexadecanoic acid Classified as a nonhazardous substance
C ₁₆ H ₂₂ O ₄	279.1587 279.1585 279.1591 279.1590 279.1587 279.1591	1.4 2.1 -0.1 0.5 1.4 -0.2	277.1446 277.1446 277.1446 277.1448	-0.3 -0.2 -0.3 -1.0	278.1518	VE-based resin VE-based composite VE-based waste S-based resin S-based composite S-based waste	Dibutyl phthalate ⁵³ Plasticizers Endocrine disrupting compound, potential carcinogen and teratogen

	285.2785	1.2	283.2640	0.7		VE-based resin	
			283.2642	0.2		VE-based composite	Octadecanoic acid
	285.2788	-0.1	283.2643	-0.2	204 2745	VE-based waste	Softens plastics
C18H36O2			283.2639	1.1	264.2715	S-based resin	Classified as
			283.2642	0.3		S-based composite	nonhazardous
	285.2789	-0.3	283.2643	-0.4		S-based waste	
	301.1644	0.7				VE-based resin	
	301.1643	0.9				VE-based composite	Triproylene glycol
C15H24O6	301.1645	0.3	299.1500	0.1	300.1573	VE-based waste	diacrylate
	301.1644	0.6	299.1498	0.7		S-based resin	Resin monomer
			299.1500	-0.1		S-based waste	
			301.2382	0.9		VE-based resin	1.1 di/tart butyl
			301.2385	-0.3		VE-based composite	
			301.2385	-0.2	202 2457	VE-based waste	peroxy)-3,3,3-
C17 Π 34 U 4			301.2381	1.0	302.2457	S-based resin	unneunyi
			301.2384	0.0		S-based composite	Derevide initiator
			301.2385	-0.2		S-based waste	
	313 1428	1 9				VE-based resin	Butyl benzyl
	010.1420	1.0	311 1292	-11		VE-based composite	phthalate ⁵⁴
	313 1435	-0.2	311 1290	_0.2		VE-based waste	Plasticizer
C ₁₉ H ₂₀ O ₄	313 1432	0.2	011.1200	-0.2	312.1362	S-based resin	Endocrine disrupting
	313 1428	19	311 1291	-0.7		S-based composite	compound, potential
	010.1420	1.0	311 1290	-0.4		S-based waste	carcinogen and
			011.1200	0.1			teratogen
							Bisphenol A
			000 4507				diglycidyl ether ⁵⁵
	341.1744	0.9	339.1597	1.3		VE-based resin	Component of
C21H24O4	341.1745	0.6			340,1675	VE-based composite	epoxy resin
C21H24O4	341.1745	0.7				VE-based waste	Irritant, potential
	341.1745	0.7	339.1604	-0.7		S-based composite	mutagen, endocrine
							disrupting
							compound

C24H38O4	391.2839 391.2838 391.2839 391.2839 391.2839 391.2842	0.8 1.2 1.1 0.9 0.3		390.2770	VE-based resin VE-based waste S-based resin S-based composite S-based waste	Di(2-ethylhexyl) phthalate ⁵⁶ or Diisooctyl phthalate ⁵⁷ Plasticizer Endocrine disrupting compound, potential carcinogen and teratogen
C22H38O6	399.2737	0.9		398.2668	S-based resin	Bis(4-tert- butylcyclohexyl) peroxydicarbonate Perkadox16 Radical initiator
C30H50	411.3983 411.3986	0.5 -0.2		410.3913	S-based resin S-based waste	Squalene Little to no known toxicological information

References

- 1 S. M. Teimouri Sendesi, K. Ra, E. N. Conkling, B. E. Boor, Md. Nuruddin, J. A. Howarter, J. P. Youngblood, L. M. Kobos, J. H. Shannahan, C. T. Jafvert and A. J. Whelton, Worksite Chemical Air Emissions and Worker Exposure during Sanitary Sewer and Stormwater Pipe Rehabilitation Using Cured-in-Place-Pipe (CIPP), *Environ. Sci. Technol. Lett.*, 2017, **4**, 325–333.
- A. C. Morales, J. M. Tomlin, C. P. West, F. A. Rivera-Adorno, B. N. Peterson, S. A. L. Sharpe, Y. Noh, S. M. T. Sendesi, B. E. Boor, J. A. Howarter, R. C. Moffet, S. China, B. T. O'Callahan, P. Z. El-Khoury, A. J. Whelton and A. Laskin, Atmospheric emission of nanoplastics from sewer pipe repairs, *Nat. Nanotechnol.*, 2022, **17**, 1171–1177.
- 3 S. M. Teimouri Sendesi, Y. Noh, M. Nuruddin, B. E. Boor, J. A. Howarter, J. P. Youngblood, C. T. Jafvert and A. J. Whelton, An emerging mobile air pollution source: outdoor plastic liner manufacturing sites discharge VOCs into urban and rural areas, *Environ. Sci.: Processes Impacts*, 2020, **22**, 1828–1841.
- 4 R. C. Moffet, A. V. Tivanski and M. K. Gilles, *Scanning transmission X-ray microscopy: Applications in atmospheric aerosol research*, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2011.
- 5 T. Hemraj-Benny, S. Banerjee, S. Sambasivan, M. Balasubramanian, D. A. Fischer, G. Eres, A. A. Puretzky, D. B. Geohegan, D. H. Lowndes, W. Han, J. A. Misewich and S. S. Wong, Near-Edge X-ray Absorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials, *Small*, 2006, **2**, 26–35.
- 6 R. C. Moffet, T. Henn, A. Laskin and M. K. Gilles, Automated Chemical Analysis of Internally Mixed Aerosol Particles Using X-ray Spectromicroscopy at the Carbon K-Edge †, *Anal. Chem.*, 2010, **82**, 7906–7914.
- 7 R. C. Moffet, T. C. Rödel, S. T. Kelly, X. Y. Yu, G. T. Carroll, J. Fast, R. A. Zaveri, A. Laskin and M. K. Gilles, Spectro-microscopic measurements of carbonaceous aerosol aging in Central California, *Atmos. Chem. Phys.*, 2013, **13**, 10445–10459.
- 8 R. C. Moffet, R. E. O'Brien, P. A. Alpert, S. T. Kelly, D. Q. Pham, M. K. Gilles, D. A. Knopf and A. Laskin, Morphology and mixing of black carbon particles collected in central California during the CARES field study, *Atmos. Chem. Phys.*, 2016, **16**, 14515–14525.
- M. Fraund, D. J. Bonanno, S. China, D. Q. Pham, D. Veghte, J. Weis, G. Kulkarni, K. Teske, M. K. Gilles, A. Laskin and R. C. Moffet, *Optical properties and composition of viscous organic particles found in the Southern Great Plains*, Aerosols/Field Measurements/Troposphere/Chemistry (chemical composition and reactions), 2020.
- J. M. Tomlin, K. A. Jankowski, F. A. Rivera-Adorno, M. Fraund, S. China, B. H. Stirm, R. Kaeser, G. S. Eakins, R. C. Moffet, P. B. Shepson and A. Laskin, Chemical Imaging of Fine Mode Atmospheric Particles Collected from a Research Aircraft over Agricultural Fields, ACS Earth Space Chem., 2020, 4, 2171–2184.
- 11 R. J. Hopkins, A. V. Tivanski, B. D. Marten and M. K. Gilles, Chemical bonding and structure of black carbon reference materials and individual carbonaceous atmospheric aerosols, *Journal of Aerosol Science*, 2007, **38**, 573–591.

- 12 A. Zelenyuk, D. Imre, J. Wilson, Z. Zhang, J. Wang and K. Mueller, Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context, *J. Am. Soc. Mass Spectrom.*, 2015, **26**, 257–270.
- 13 A. Zelenyuk, J. Yang, D. Imre and E. Choi, Achieving Size Independent Hit-Rate in Single Particle Mass Spectrometry, *Aerosol Science and Technology*, 2009, **43**, 305–310.
- 14 J. H. Gross, Direct analysis in real time—a critical review on DART-MS, *Anal Bioanal Chem*, 2014, **406**, 63–80.
- 15 R. B. Cody, J. A. Laramee, J. M. Nilles and H. D. Durst, Direct analysis in real time (DART) mass spectrometry, *JEOL news*, 2005, **40**, 8–12.
- 16 F. M. Penning, **\$**ber Ionisation durch metastabile Atome, *Naturwissenschaften*, 1927, **15**, 818–818.
- 17 C. P. West, H. Yun-Jung, K. T. MacFeely, S. M. Huston, B. P. Aridjis-Olivos, A. C. Morales and A. Laskin, Volatility Measurements of Individual Components in Organic Aerosol Mixtures Using Temperature-Programmed Desorption-Direct Analysis in Real Time-High Resolution Mass Spectrometry, *Analytical Chemistry*.
- 18 P. J. Roach, J. Laskin and A. Laskin, Higher-Order Mass Defect Analysis for Mass Spectra of Complex Organic Mixtures, *Anal. Chem.*, 2011, **83**, 4924–4929.
- 19 D. B. Priddy, in *Polymer Synthesis*, Springer-Verlag, Berlin/Heidelberg, 1994, vol. 111, pp. 67– 114.
- 20 H. Q. Pham and M. J. Marks, in *Ullmann's Encyclopedia of Industrial Chemistry*, ed. Wiley-VCH Verlag GmbH & Co. KGaA, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005, p. a09_547.pub2.
- 21 S. A. Vogel, The Politics of Plastics: The Making and Unmaking of Bisphenol A "Safety", *Am J Public Health*, 2009, **99**, S559–S566.
- 22 H. Kimura, A simple method for the anionic polymerization of ?-carbonyl acids in water, *J. Polym. Sci. A Polym. Chem.*, 1998, **36**, 189–193.
- P. J. Ziemann, Formation of Alkoxyhydroperoxy Aldehydes and Cyclic Peroxyhemiacetals from Reactions of Cyclic Alkenes with O₃ in the Presence of Alcohols, *J. Phys. Chem. A*, 2003, **107**, 2048–2060.
- T. B. Nguyen, P. J. Roach, J. Laskin, A. Laskin and S. A. Nizkorodov, Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol, *Atmos. Chem. Phys.*, 2011, 11, 6931–6944.
- 25 R. Zhao, A. K. Y. Lee, R. Soong, A. J. Simpson and J. P. D. Abbatt, Formation of aqueousphase α-hydroxyhydroperoxides (α-HHP): potential atmospheric impacts, *Atmos. Chem. Phys.*, 2013, **13**, 5857–5872.
- J. Laskin, A. Laskin, S. A. Nizkorodov, P. Roach, P. Eckert, M. K. Gilles, B. Wang, H. J. (Julie) Lee and Q. Hu, Molecular Selectivity of Brown Carbon Chromophores, *Environ. Sci. Technol.*, 2014, 48, 12047–12055.

- H. Herrmann, T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich and T. Otto, Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, *Chem. Rev.*, 2015, **115**, 4259–4334.
- 28 F. W. McLafferty and F. Turecek, *Interpretation of mass spectra*, University science books, 1993.
- 29 V. V. Lobodin, A. G. Marshall and C. S. Hsu, Compositional Space Boundaries for Organic Compounds, *Anal. Chem.*, 2012, **84**, 3410–3416.
- 30 S. Kim, R. W. Kramer and P. G. Hatcher, Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the Van Krevelen Diagram, *Anal. Chem.*, 2003, **75**, 5336–5344.
- 31 J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. H. Kessler, M. R. Canagaratna, K. R. Wilson, K. E. Altieri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb and D. R. Worsnop, Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol, *Nature Chem*, 2011, **3**, 133–139.
- 32 J. H. Kroll, C. Y. Lim, S. H. Kessler and K. R. Wilson, Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon, *J. Phys. Chem. A*, 2015, **119**, 10767–10783.
- 33 Y. Li, U. Pöschl and M. Shiraiwa, Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols, *Atmos. Chem. Phys.*, 2016, **16**, 3327–3344.
- 34 N. M. Donahue, E. R. Trump, J. R. Pierce and I. Riipinen, Theoretical constraints on pure vaporpressure driven condensation of organics to ultrafine particles: ORGANIC CONDENSATION, *Geophysical Research Letters*, 2011, **38**, n/a-n/a.
- 35 W.-S. W. DeRieux, Y. Li, P. Lin, J. Laskin, A. Laskin, A. K. Bertram, S. A. Nizkorodov and M. Shiraiwa, Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition, *Atmos. Chem. Phys.*, 2018, **18**, 6331–6351.
- 36 Agency for Toxic Substances and Disease Registry, *Toxicological Profile for Ethylbenzene*, U.S. Department of Health and Human Services, 2010.
- 37 Comet Chemical Company LTD., *Benzyl alcohol*, 2016.
- 38 Sigma Aldrich, *Hydroquinone*, Sigma Aldrich, 2023.
- 39 Toronto Research Chemicals Inc., *2-propenylbenzene*, Toronto Research Chemicals Inc., 2015.
- 40 Aurochemicals, *Phenyl Ethyl Alcohol*, Aurochemicals, 2019.
- 41 ThermoFisher Scientific, *4-tert-butyl cyclohexanone*, ThermoFisher Scientific, 2021.
- 42 Sigma Aldrich, *Divinylbenzene*, Sigma Aldrich, 2022.
- 43 Sigma Aldrich, *tert-butyl benzene*, Sigma Aldrich, 2022.
- 44 Sigma Aldrich, *3,3,5-Trimethyl cyclohexanone*, Sigma Aldrich, 2021.
- 45 *Phthalic Anhydride*, Environmental Protection Agency, 2000.

- 46 Sigma Aldrich, *Phenanthrene*, Sigma Aldrich, 2023.
- 47 Sigma Aldrich, *Ethyl benzoylacetate*, Sigma Aldrich, 2022.
- 48 Sigma Aldrich, *Ethylene glycol dimethacrylate*, Sigma Aldrich, 2019.
- 49 Sigma Aldrich, *4-tert-butylcyclohexyl acrylate*, Sigma Aldrich, 2019.
- 50 Sigma Aldrich, *N-butylbenzenesulfonamide*, Sigma Aldrich, 2022.
- 51 Arkema, *Tert-butyl 2-ethylhexaneperoxoate*, Arkema, 2013.
- 52 Agency for Toxic Substances and Disease Registry, *Toxicological Profile for diethyl phthalate*, U.S. Department of Health and Human Services, 1995.
- 53 Environmental Protection Agency, *Dibutyl phthalate*, Environmental Protection Agency, 2000.
- 54 Parchem, *Butyl Benzyl Phthalate*, Parchem, 2009.
- 55 Sigma Aldrich, *Bisphenol A diglycidyl ether*, Sigma Aldrich, 2022.
- 56 State of California, *Di(2-ethylhexyl)phthalate (DEHP)*, State of California, California, 2023.
- 57 Sigma Aldrich, *Dioctyl Phthalate*, Sigma Aldrich, 2023.