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S1. Analytical solutions of the general model 23 

The analytical solutions of the general model are derived in this section. 24 

In the soil compartment: 25 

𝑃𝑎𝑟𝑒𝑛𝑡 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑: 𝐶𝑃,𝑆𝑜𝑖𝑙(𝑡) = 𝐶𝑃,𝑆𝑜𝑖𝑙(0) exp(−𝑘𝑃,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠 𝑡) (s1) 

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 𝑖: 𝐶𝑀,𝑖,𝑆𝑜𝑖𝑙(𝑡) =
𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙

𝑇𝑟𝑎𝑛𝑠

𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠
𝐶𝑃,𝑆𝑜𝑖𝑙(0)[exp(−𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠 𝑡) − exp(−𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠 𝑡)] (s2) 

In the tuber compartment: 26 

𝑃𝑎𝑟𝑒𝑛𝑡 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑: 𝐶𝑃,𝑇𝑢𝑏𝑒𝑟(𝑡)

=
𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑆→𝑇

𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠
𝐶𝑃,𝑆𝑜𝑖𝑙(0){exp(−𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠 𝑡)

− exp[−(𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 )𝑡]} 

(s3) 

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 𝑖: 𝐶𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟(𝑡)

=

𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝑇𝑟𝑎𝑛𝑠 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑆→𝑇

(𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠 )
+

𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑇𝑟𝑎𝑛𝑠 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑆→𝑇

(𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠 )

𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠
𝐶𝑃,𝑆𝑜𝑖𝑙(0) exp(−𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠 𝑡)

−
𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑆→𝑇 𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝑇𝑟𝑎𝑛𝑠

(𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠 )(𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 − 𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠 )
𝐶𝑃,𝑆𝑜𝑖𝑙(0) exp(−𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠 𝑡)

−
𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑇𝑟𝑎𝑛𝑠 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑆→𝑇

(𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠 )(𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 − 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 − 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 )
𝐶𝑃,𝑆𝑜𝑖𝑙(0) exp[−(𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑇→𝑆

+ 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟

𝐺𝑟𝑜𝑤 )𝑡] + 𝐴 exp[−(𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 )𝑡] 

(s4a) 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡: 𝐴

= −

𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝑇𝑟𝑎𝑛𝑠 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑆→𝑇

(𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠
)

+
𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑇𝑟𝑎𝑛𝑠
𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑆→𝑇

(𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠
)

𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠
𝐶𝑃,𝑆𝑜𝑖𝑙(0)

+
𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑆→𝑇 𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝑇𝑟𝑎𝑛𝑠

(𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠
) (𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑇→𝑆 + 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟

𝐺𝑟𝑜𝑤 − 𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠

)
𝐶𝑃,𝑆𝑜𝑖𝑙(0)

+
𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑇𝑟𝑎𝑛𝑠
𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑆→𝑇

(𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 + 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑀𝑒𝑡 + 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 − 𝑘𝑃,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠
) (𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟

𝑇→𝑆 + 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑀𝑒𝑡 − 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟

𝑇→𝑆 − 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑀𝑒𝑡 )

𝐶𝑃,𝑆𝑜𝑖𝑙(0) 

(s4b) 

where A is the integration constant. 27 



S2. Model application for glyphosate 28 

In this section, we present the calculation process of the rate constants of glyphosate and its 29 

primary toxic metabolite (i.e., AMPA). 30 

In the soil compartment: 31 

For the parent compound (glyphosate), the overall dissipation process comprises biodegradation 32 

(microorganism), volatilization, water-induced elimination (e.g., surface runoff, and vertical 33 

filtration), the uptake by plants (e.g., grasses, weeds), and photolysis (Li, 2021a; Li and Niu, 2021). 34 

For the simulation purpose, we only considered the biodegradation process, and other major 35 

elimination processes were included in the variability analysis. Thus, the 𝑘𝑃,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠   value of 36 

glyphosate was approximated as 0.058 d-1 (Fantke et al., 2015; Lewis et al., 2016; Li, 2021a), 37 

which was based on the biodegradation process in the soil. 38 

For the primary toxic metabolite of glyphosate (AMPA), the overall dissipation process in the soil 39 

comprises processes that are similar to those of glyphosate, which is also discussed in the 40 

variability analysis. Thus, the 𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠  value of AMPA was approximated as 0.0057 d-1 based on 41 

the biodegradation process (European Commission, 2020). The 𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝑇𝑟𝑎𝑛𝑠   value of AMPA was 42 

estimated as 0.38 d-1, which is the product of the biodegradation rate constant (i.e., 0.058 d-1) and 43 

the molecular weight ratio of AMPA to glyphosate (i.e., 0.66) (Li, 2021a). 44 

In the tuber compartment: 45 

The default value of 0.139 d-1 was set to 𝑘𝑇𝑢𝑏𝑒𝑟
𝐺𝑟𝑜𝑤 , which was based on the logistic growth dynamics 46 

of the potato (Fantke et al., 2011a; Trapp et al., 2007). Due to little information on the metabolic 47 

rate constants of pesticides in plant tissues (Jacobsen et al., 2015; Xiao et al., 2021a, 2021b), we 48 



used half of the dissipation rate constant tabulated by the USEtox database (Fantke et al., 2017), 49 

which was estimated as 0.15 d-1 for 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑀𝑒𝑡 . To evaluate the impact of the metabolic kinetics of the 50 

compound on simulation results, we conducted the variability analysis in Section S3. In addition, 51 

for the same reason, the metabolic rate constant of AMPA in potatoes is unknown; thus, for the 52 

risk assessment (Juraske et al., 2011; Trapp et al., 2007), the 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑀𝑒𝑡  value of AMPA was set as 53 

zero. The value 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑇𝑟𝑎𝑛𝑠  of AMPA can be calculated based on the same method for that in the soil, 54 

which is estimated as 0.1 d-1, namely the product of the metabolic rate constant of glyphosate in 55 

the potato (i.e., 𝑘𝑃,𝑇𝑢𝑏𝑒𝑟
𝑀𝑒𝑡 = 0.15  d-1) and the molecular weight ratio of AMPA to glyphosate (i.e., 56 

0.66).   57 

For the uptake and elimination routes of the compound in potatoes via diffusion, the spherical-58 

shape-based point-estimate approach (Trapp et al., 2007) was adopted to simulate the uptake and 59 

elimination rate constants as follows: 60 

𝑘𝑇𝑢𝑏𝑒𝑟
𝑆→𝑇 =

23𝜃𝑊,𝑇𝑇𝑇𝑢𝑏𝑒𝑟𝐷𝑊

𝑟𝑆
2𝜌𝑇𝑢𝑏𝑒𝑟𝐾𝑆𝑊

 (s5) 

𝑘𝑇𝑢𝑏𝑒𝑟
𝑇→𝑆 =

23𝜃𝑊,𝑇𝑇𝑇𝑢𝑏𝑒𝑟𝐷𝑊

𝑟𝑆
2𝜌𝑇𝑢𝑏𝑒𝑟𝐾𝑇𝑊

 (s6) 

where 𝐷𝑊 (m2
 d

-1) is the diffusivity of the chemical in water, and the values for glyphosate and 61 

AMPA were calculated as 7.5 × 10-5 m2 d-1 and 9.3 × 10-5 m2 d-1, respectively, based on the 62 

molecular weight approach (Trapp et al., 2003). 𝜃𝑊,𝑇 (dimensionless) is the water content of the 63 

tuber tissue, which was estimated as 0.778 (Caetano et al., 2018). 𝑇𝑇𝑢𝑏𝑒𝑟 (dimensionless) is the 64 

tortuosity of the tuber tissue, which was estimated as 0.72 (Li, 2021b) based on the water content 65 

and air pores of the tuber tissue (Trapp, 2007; Trapp et al., 2007). 𝑟𝑆 (m) is the radius of the tuber, 66 

which was estimated as 0.04 m based on the medium-sized potato (Trapp et al., 2007). 𝜌𝑇𝑢𝑏𝑒𝑟 (kg 67 



L-1) is the density of the tuber (medulla), which was estimated as 1.1 (Li, 2020). 𝐾𝑆𝑊 (L kg-1) is 68 

the soil-water partition coefficient of the compound, which can be estimated according to the major 69 

(air, water, and organic matter) components of the soil (Paraíba and Kataguiri, 2008; Trapp et al., 70 

2007) as follows: 71 

𝐾𝑆𝑊 =
𝜌𝑆,𝐷𝑟𝑦𝑓𝑂𝐶𝐾𝑂𝐶 + 𝑓𝑊 + 𝐾𝐴𝑊𝑓𝐴

𝜌𝑆,𝑊𝑒𝑡
≈

𝜌𝑆,𝐷𝑟𝑦𝑓𝑂𝐶𝐾𝑂𝐶 + 𝑓𝑊

𝜌𝑆,𝑊𝑒𝑡
 (s7) 

where 𝜌𝑆,𝐷𝑟𝑦 (kg L-1) and 𝜌𝑆,𝑊𝑒𝑡 (kg L-1) are the densities of dry and wet soil, respectively, which 72 

were estimated as 1.6 kg L-1 and 1.95 kg L-1, respectively (Trapp et al., 2007). 𝑓𝑂𝐶 (dimensionless) 73 

is the fraction of the organic matter of the soil, which was estimated as 0.018 (Trapp et al., 2007). 74 

𝑓𝑊 (dimensionless) is the water fraction of the soil, which was estimated as 0.28 (Trapp et al., 75 

2007). 𝑓𝐴 (dimensionless) is the air fraction of the soil, which was estimated as 0.12 (Trapp et al., 76 

2007). 𝐾𝑂𝐶 (L kg-1) is the soil sorption partition coefficient of the compound, and the logarithm 77 

values (log 𝐾𝑂𝐶) of glyphosate and AMPA were taken as 4.34 and 3.7, respectively (Daouk, 2013). 78 

𝐾𝐴𝑊  (dimensionless) is the air-water partition coefficient (or the dimensionless Henry’s law 79 

constant) of the compound. We note that the 𝐾𝐴𝑊 values of glyphosate and AMPA are so low (i.e., 80 

non-volatile compounds) that the term ‘𝐾𝐴𝑊𝑓𝐴’ in Eq. (s7) can be negligible (Bento, 2018). Then, 81 

the 𝐾𝑆𝑊 values of glyphosate and AMPA were calculated based on the inputs above as 323 L kg-1 82 

and 74.2 L kg-1, respectively. 𝐾𝑇𝑊 (L kg-1) is the tuber tissue-water partition coefficient of the 83 

compound, which can be estimated using the major nutritional components of the tuber (Chiou et 84 

al., 2001; Trapp et al., 2007) as follows 85 

𝐾𝑇𝑊 = 1.22𝑓𝐿𝑖𝑝,𝑇𝐾𝑂𝑊
0.77 + 𝑓𝐶𝑎𝑟𝑏,𝑇𝐾𝐶ℎ + 𝜃𝑊,𝑇 (s8) 

where 𝐾𝑂𝑊 (dimensionless) is the octanol-water partition coefficient of the compound, and the 86 



logarithm values of glyphosate and AMPA were estimated as –3.4 and –1.4, respectively, (National 87 

Library of Medicine, 2021; Royal Society of Chemistry, 2022). 𝑓𝐿𝑖𝑝,𝑇 (dimensionless) and 𝑓𝐶𝑎𝑟𝑏,𝑇 88 

(dimensionless), are the massive contents of lipid and non-lipid carbohydrate, respectively, which 89 

were estimated as 0.001 and 0.154, respectively (Trapp et al., 2007). 𝐾𝐶ℎ  (L kg-1) is the 90 

carbohydrate-water partition coefficient of the compound, and the values of glyphosate and AMPA 91 

were estimated (via lipophilicity) as 0.1 (Chiou et al., 2001; Trapp et al., 2007). 𝜃𝑊,𝑇 (L kg-1) is 92 

the volumetric content of water in the tuber, which was estimated as 0.778 (Trapp et al., 2007).  93 

Then, the 𝐾𝑇𝑊 values of glyphosate and AMPA were calculated as 0.79.  94 

S3. Variability analysis 95 

The variability analysis was conducted by varying selected rate constants or essential 96 

physicochemical properties of glyphosate and AMPA, which generated the variability intervals of 97 

the simulation results (e.g., concentrations of the glyphosate and AMPA in the potato). The 98 

variability analysis can help users conduct the regional-specific assessment of bioconcentration of 99 

pesticides and their toxic metabolites by focusing on site-specific model inputs.   100 

S3.1 Dissipation rate constants of compounds in the soil 101 

In the previous section (i.e., simulating concentrations of glyphosate and AMPA), we only 102 

considered the degradation kinetics of glyphosate and AMPA in the soil to estimate the degradation 103 

rate constants (i.e., 𝑘𝑃,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠   and 𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠  ) for the conservative consideration (i.e., for the human 104 

health risk assessment). However, the overall dissipation of glyphosate and AMPA involves 105 

multiple processes. Thus, we varied 𝑘𝑃,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠   and 𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙

𝐷𝑖𝑠𝑠   values of glyphosate and AMPA to 106 

generate the variability intervals of the simulated concentrations in the potato. The ranges of 𝑘𝑃,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠  107 



and 𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠  values of glyphosate and AMPA were taken as [3.5 × 10-3, 0.7] d-1 and [7.2 × 10-4, 3.0 108 

× 10-2] d-1, respectively (Bento, 2018). Accordingly, the 𝑘𝑀,𝑖,𝑆𝑜𝑖𝑙
𝑇𝑟𝑎𝑛𝑠  value of AMPA was estimated by 109 

multiplying the half of 𝑘𝑃,𝑆𝑜𝑖𝑙
𝐷𝑖𝑠𝑠   and 0.66 (i.e., the molecular weight ratio between AMPA and 110 

glyphosate). The variability intervals of the simulation results were generated by using the  111 

S3.2 KOC of compounds in the soil 112 

We also varied the KOC values of glyphosate and AMPA to generate the variability intervals of the 113 

simulated concentrations of glyphosate and AMPA in the potato because the KOC values can be 114 

substantially affected by soil properties (e.g., pH and charges). The ranges of KOC values of 115 

glyphosate and AMPA were taken as [884, 60000] L kg-1 and [1160, 24800] L kg-1, respectively 116 

(Bento, 2018). 117 

S3.3 Metabolic rate constants of compounds in the potato 118 

In the previous section, we set the metabolic rate constant of AMPA as zero for the conservative 119 

consideration (i.e., the purpose of the human health risk assessment). However, AMPA can be 120 

further biotransformed by plant enzymes (la Cecilia et al., 2018). Thus, we varied the 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑀𝑒𝑡  121 

value of AMPA in the potato to generate the variability interval of the simulation results. Due to 122 

data limitations, we set 𝑘𝑀,𝑖,𝑇𝑢𝑏𝑒𝑟
𝑀𝑒𝑡  values as 0 d-1, 0.1 d-1, 0.25 d-1, and 0.5 d-1. 123 

S4. Case study 124 

Maggi et al. (2020) evaluated the concentrations of glyphosate and AMPA in global surface soil. 125 

We utilized the data of Maggi et al. (2020) (soil residue concentrations) to model the toxic pressure 126 

of glyphosate and AMAP in potatoes. The results of the simulation are presented in Table S1. 127 

Importantly, certain observed AMPA concentrations in the soil are notably higher than those of 128 



glyphosate, while in other cases, this difference is not evident. This phenomenon arises from the 129 

fact that pesticides are usually applied in pulses, and if measurements occur shortly after pesticide 130 

application, the parent compounds might exhibit considerably greater soil concentrations than their 131 

corresponding metabolites. Additionally, various dynamic environmental factors, including 132 

precipitation, wind, sunlight, and humidity, can exert influence on the soil concentrations of 133 

chemical contaminants. 134 

Table S1. Summary of glyphosate and AMPA concentration simulation results in potatoes based 135 

on their concentrations in global surface soil. The soil concentrations were obtained from Maggi 136 

et al. (2020), which were compiled from the scientific literature. Metabolite and non-metabolite 137 

models were utilized to calculate glyphosate and AMPA concentrations in potatoes using simulated 138 

bioconcentration factors with a 30-day time-to-harvest interval. 139 

Location 

Observed (means) Metabolite model Non-metabolite model 

Glyphosate 

concentration 

in soil 

(mg/kg) 

AMPA 

concentration 

in soil 

(mg/kg) 

Glyphosate 

concentration 

in potato 

(mg/kg) 

AMPA 

concentration 

in potato 

(mg/kg) 

Glyphosate 

concentration 

in potato 

(mg/kg) 

AMPA 

concentration 

in potato 

(mg/kg) 

Province of Buenos Aires, 

Argentina 0.0347 0.2993 2.31E-06 40.99  2.76E-06 34.31  

Province of Buenos Aires, 

Argentina 0.53 0 3.53E-05 0 4.22E-05 0 

Toholamni, Western Finland 0.1476 0.1284 9.84E-06 17.58  1.17E-05 14.72  

Nntuna, Sweden 0.00965 0.0535 6.43E-07 7.33  7.68E-07 6.13  

Lanna, Sweden 0.02147 0.1177 1.43E-06 16.12  1.71E-06 13.49  

Sandved, Denmark 0.00081 0.01046 5.40E-08 1.43  6.44E-08 1.20  

Montepaldi-San Csciano, Italy 0 0.0609 0 8.34  0 6.98  

United Kindom 0.15 0.15 1.00E-05 20.54  1.19E-05 17.20  

Denmark 0.11 0.14 7.33E-06 19.17  8.75E-06 16.05  

Portugal 1.14 0.73 7.60E-05 99.97  9.07E-05 83.69  

Italy 0.13 0.1 8.66E-06 13.70  1.03E-05 11.46  

Greece 0.54 0.21 3.60E-05 28.76  4.30E-05 24.08  



Spain 0.22 0.09 1.47E-05 12.33  1.75E-05 10.32  

Hungary 0.1 0.23 6.67E-06 31.50  7.96E-06 26.37  

Poland 0.16 0.14 1.07E-05 19.17  1.27E-05 16.05  

Netherland 0.13 0.13 8.66E-06 17.80  1.03E-05 14.90  

France 0.08 0.13 5.33E-06 17.80  6.36E-06 14.90  

Germany  0.13 0.15 8.66E-06 20.54  1.03E-05 17.20  

 140 

S5. Supplementary figures 141 

The supplementary figures of the main text are provided in this section. 142 

 143 

Figure S1. Simulated concentrations of glyphosate and aminomethylphosphonic acid (AMPA) in 144 

the soil based on the initial concentration of glyphosate of 1 mg kg-1 in the soil plotted against time 145 

(t, d) after pesticide application (i.e., t = 0 d).  146 



 147 

Figure S2. The ratio of the simulated AMPA concentrations in the potato between the metabolite 148 

and non-metabolite models plotted against time (t, d) after glyphosate application.  149 

S6. Model extension 150 

In this study, we present a modeling approach that considers the bioconcentration of pesticide 151 

metabolites in plants. We demonstrate the effectiveness of this approach using potatoes as an 152 

example crop. While there is currently a shortage of experimental studies to evaluate the 153 

simulations of pesticides including their metabolites, the plant uptake models, which underlie our 154 

proposed approach, have been robustly supported by field observations (Pang et al., 2020, 2016). 155 

This robustness lends credibility to our approach for predicting the uptake of organic compounds, 156 

encompassing both parent compounds and their metabolites. The modeling experiments utilizing 157 

glyphosate as an example serve as a reminder to risk and impact assessors to prioritize the 158 

consideration of pesticides' toxic metabolites in addition to the parent compounds. This will 159 

contribute to a more comprehensive assessment framework. We note that different plant species 160 

have varying pesticide uptake routes that depend on both plant physiology and pesticide 161 



application patterns. However, our proposed modeling approach can be adapted to other crops and 162 

their respective pesticide uptake routes. Table S2 provides a summary of the extension of our 163 

modeling approach to other crops. Above-ground crops have more pathways for pesticide uptake 164 

compared to tuber crops, including surface penetration (such as fruit, leaves, and stems) and 165 

transpiration. This is because pesticide residues can be distributed in soil, air, and plant surfaces 166 

after their application, particularly through aerial spraying. As a result, pesticide metabolites can 167 

be generated in various compartments, which increases their uptake routes by above-ground crops. 168 

To simulate metabolite concentrations in above-ground crops, additional equations for metabolite 169 

generation compartments and pesticide and metabolite uptake routes are necessary. These 170 

equations can be generated and solved using a first-order kinetics-based matrix approach (Fantke 171 

et al., 2011b, 2011a). This matrix-based approach offers the capability to provide a comprehensive 172 

pesticide bioconcentration or bioaccumulation modeling framework for various plant 173 

compartments (including stem, leaf, fruit, and root) across diverse plant species. This allows users 174 

to tailor their simulations to edible portions of the plant. For instance, risk assessors may be 175 

concerned with pesticide bioconcentration modeling in the leaves of lettuces, while the focus might 176 

shift to the fruit of apple trees. With the integration of metabolite simulations into this matrix 177 

approach, the added toxicity of metabolites to their parent compounds across all modeling 178 

compartments—leaf, fruit, stem, and root—can be generated, which equips users to choose 179 

simulation outcomes tailored to any consumable plant parts. 180 

Notably, the PHI for glyphosate application in crops can vary widely, such as ranging from 7 to 28 181 

d (EFSA, 2013). While our simulation results have revealed that the concentration of glyphosate 182 



in potatoes starts to decline shortly after pesticide application (around 2-3 d) and continues to 183 

decrease during the potato's growth period, its main metabolite, AMPA, displays a consistent 184 

increase in concentration within the potato over a longer period. Therefore, even though certain 185 

suggested PHIs for glyphosate might result in reduced pesticide concentrations (e.g., glyphosate 186 

itself) at harvest time, their metabolites are likely to accumulate in the edible parts of crops, 187 

introducing potentially significant health risks to consumers. Consequently, extending the PHI can 188 

indeed help diminish pesticide residue levels in crops. However, this approach warrants careful 189 

consideration, particularly for toxic compounds and their metabolites, which could pose substantial 190 

health concerns. Hence, it is advisable that the proposed PHI of pesticides, in conjunction with 191 

their efficacy in pest management, takes into account the potential adverse effects posed by their 192 

metabolites on human and ecological health. 193 

Plant growth dynamics can exert a significant influence on the bioconcentration of pesticides in 194 

plant tissues. In this study, we employed a simple yet effective strategy, utilizing the growth rate 195 

constant to capture the dilution effect on chemical fate and transport within plants. This approach, 196 

widely adopted in modeling and risk assessment endeavors, allows for a straightforward depiction 197 

of pesticide behavior (Fantke et al., 2011a; Juraske et al., 2011; Trapp et al., 2007). 198 

The growth and cultivation of crops invariably display region-specific patterns, contributing to the 199 

variability of pesticide bioconcentration in plant tissues. As evidenced by our variability analysis, 200 

various environmental factors, including soil properties and weather conditions, yield a significant 201 

influence on pesticide and metabolite bioconcentration potentials within plants. This is largely 202 

attributed to the temperature's substantial impact on the biotransformation rate of the parent 203 



compound. Consequently, an increase in surrounding temperature can lead to a heightened 204 

production rate of metabolites. Moreover, given that soil serves as a primary source of pesticide 205 

bioconcentration in plants (Fantke et al., 2011a), its composition can significantly differ across 206 

regions. For instance, varying soil types possess distinct organic matter contents that directly 207 

influence pesticide absorption in the soil. Soils rich in organic matter yield elevated KOC values 208 

for lipophilic pesticides, hindering the diffusion kinetics of these compounds from the soil into the 209 

tuber. Conversely, diverse pH values in the soil can impact the dissociation process of certain 210 

pesticides, particularly those that are ionic or polar in nature (Trapp, 2004). Thus, the uptake of 211 

such compounds by plants from the soil will manifest region-specific patterns. To conduct a 212 

regional assessment of pesticide and metabolite bioconcentration in plants, we recommend that 213 

users modify region-specific model input variables, such as KOC, to generate simulation outcomes 214 

that accurately reflect dynamic environmental conditions across regions. 215 

The comparison between metabolite and non-metabolite models reveals that, under specific 216 

conditions, such as when plant tissues contain low concentrations of the parent compound or when 217 

the biotransformation rate of the parent compound within the plant tissue is notably small, the non-218 

metabolite model can serve as a viable proxy approach. This enables the simulation of the total 219 

toxicity equivalent of both the parent compound and its metabolites, especially when the uptake 220 

of metabolites from environmental compartments (like soil, air, and plant surfaces) is considered. 221 

Given its simplicity and ease of operation, the non-metabolite model is recommended if the 222 

aforementioned conditions are met. To ensure this, we suggest performing a preliminary 223 

assessment of the degradation kinetics of the parent compound within the plant tissue (Li and 224 



Fantke, 2023). Should the degradation rate constant prove to be relatively low when compared to 225 

other uptake or elimination rate constants, opting for the non-metabolite model is advisable, which 226 

can facilitate uncomplicated modeling experiments. 227 

Table S2. Summary of notable plant uptake models with their respective metabolite-based 228 

modeling strategies. 229 

Crop examples Plant uptake models Potential sources of 

pesticides 

Potential sources of 

pesticide metabolites 

References 

Lettuce Grass uptake model Leaf surface; soil Leaf surface; soil; 

plant tissues 

(Itoiz et al., 2012; 

Trapp and Matthies, 

1995) 

Tomato Herbaceous uptake 

model 

Leaf surface; soil; 

fruit surface 

Leaf surface; soil; 

fruit surface; plant 

tissues 

(Juraske et al., 2012, 

2007) 

Apple Fruit tree uptake 

model  

Leaf surface; soil; 

fruit surface; stem 

surface 

Leaf surface; soil; 

fruit surface; stem 

surface; plant tissues 

(Fantke et al., 2013; 

Mendez et al., 2018; 

Trapp, 2007; Trapp et 

al., 2003) 

Carrot Root crop uptake 

model 

Leaf surface; soil Leaf surface; soil; 

plant tissues 

(Band and King, 

2012; Li, 2022; 

Trapp, 2002, 2000) 
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