# Wildland-Urban Interface Wildfire Increases Metal Contributions to Stormwater Runoff in Paradise, California

Lauren J. Magliozzi<sup>a</sup>, Sandrine J. Matiasek<sup>b</sup>, Charles N. Alpers<sup>c</sup>, Julie A. Korak<sup>a</sup>, Diane McKnight<sup>a</sup>, Andrea L. Foster<sup>d</sup>, Joseph N. Ryan<sup>a</sup>, David A. Roth<sup>e</sup>, Peijia Ku<sup>f</sup>, Martin Tsz-Ki Tsui<sup>g</sup>, Alex T. Chow<sup>h</sup>, Jackson P. Webster<sup>i\*</sup>

<sup>a</sup> Environmental Engineering Program, University of Colorado Boulder;

<sup>b</sup> Department of Earth and Environmental Sciences, California State University Chico;

- ° U. S. Geological Survey, California Water Science Center, Sacramento, CA
- <sup>d</sup> U. S. Geological Survey Geology, Minerals, Energy, and Geophysics Science Center, Menlo Park, CA
- <sup>e</sup> U. S. Geological Survey Water Mission Area, Boulder, CO

<sup>f</sup>Environmental Sciences Division, Oak Ridge National Laboratory

<sup>g</sup> School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong;

<sup>h</sup> Department of Forestry and Environmental Conservation, Clemson University;

Department of Civil Engineering, California State University Chico

# **Supplemental Information**

#### **Table of Contents**

| 1. | Meth | ods                                            |    |
|----|------|------------------------------------------------|----|
|    | 1.1. | Sampling Locations                             | 2  |
|    | 1.2. | Total Suspended Solids                         | 2  |
|    | 1.3. | Dissolved Organic Carbon                       | 2  |
|    | 1.4. | Major Anions                                   | 2  |
|    | 1.5. | Major and Trace Metals                         | 2  |
|    | 1.6. | Total Mercury (THg)                            | 5  |
| 2. | Resu | ilts                                           |    |
|    | 2.1. | Water Quality Statistics                       | 6  |
|    | 2.2. | Mann-Whitney comparison tests                  | 12 |
|    | 2.3. | Water quality time series and phase histograms | 17 |
|    | 2.4. | Spearman's rank correlations                   | 25 |
|    | 2.5. | Exceedances (Table 2) continued                | 34 |
|    | 2.6. | Principal Component Analysis                   | 35 |
|    | 2.7. | Redundancy Analysis                            | 43 |
|    | 2.8. | Butte Creek Hydrographs                        | 46 |
| 3. | Refe | rences                                         | 47 |

1

2

6

# 1. Methods

### 1.1. Sampling Locations and GIS data sources

Detailed references for GIS are also in the references at the end of the SI. Land use characteristics were obtained from the California Department of Conservation (2022a) "Butte County Important Farmland". Burned structures were identified and mapped using CAL Fire (2020) "Camp Fire Structure Status Map", and mines were identified with the California Department of Conservation (2022b) "mines online".

Table S1 provides the GPS coordinates for each sampling location.

| Watershed       | Sub Location                    | Longitude  | Latitude  |
|-----------------|---------------------------------|------------|-----------|
| Clear Creek     | -                               | -121.64573 | 39.642124 |
| Butte Creek     | -                               | -121.70885 | 39.725599 |
| Big Chico Creek | -                               | -121.77818 | 39.768971 |
| Dry Creek       | -                               | -121.63368 | 39.622116 |
| Butte Creek     | Little Butte Creek Trailer Park | -121.67986 | 39.740438 |
| Butte Creek     | Paul Byrne Aquatic Park         | -121.61475 | 39.749509 |

Table S1. Longitudes and latitudes of sampling sites. The horizontal datum is WGS 84.

### 1.2. Total Suspended Solids

A known volume of sample (70 to 750 mL) was filtered with 0.3 µm pre-combusted glass fiber filters (Advantec) of known weight. Filters and retained TSS were dried at 105°C for 48 h in preweighed aluminum sleeves to determine mass of retained TSS and calculate a TSS concentration. (Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.)

## 1.3. Dissolved Organic Carbon

Subsamples for dissolved organic carbon (DOC) were filtered using pre-combusted glass fiber filters (0.3  $\mu$ m pore size, Advantec), acidified to pH 2 with concentrated HCl, and stored at 4°C until analysis. DOC was determined as non-purgeable organic carbon by high-temperature catalytic oxidation with a Shimadzu TOC-L. Three replicate injections (100  $\mu$ L) were selected among up to five injections to maintain a coefficient of variance <2%. Reported concentrations are the mean of three injections corrected for the instrument blank (<60  $\mu$ g/L C).

## 1.4. Major Anions

Anion concentrations were measured using a Dionex Integrion ion chromatograph with an AS-DV autosampler. All reagents (eluent, standard) were prepared with deionized (DI) water with 18 M $\Omega$ cm resistance or better (Milli-Q Direct 8, Millipore, USA). Ion separation used a carbonate eluent 4.5 mM Na<sub>2</sub>CO<sub>3</sub>/1.4 mM NaHCO<sub>3</sub> at a flow rate of 1.2 mL/min and was injected into a AG22-fast-4  $\mu$ m guard column (4×30 mm) followed by a AS22-fast-4  $\mu$ m separator column (4×150 mm). All sample runs included a series of check standards, blanks, and duplicates.

#### 1.5. Major and Trace Metals

1.5.1. Analysis performed at University of Colorado Boulder

Alkali and alkaline earth metals, assumed to be representative of major cations (Ca, K, Mg, Na) and major and trace metals (Al, Co, Cr, Fe, Mn, Ni, Pb, Zn) were analyzed in 140 water samples by inductively-coupled plasma mass spectrometry (ICP-MS) at the University of Colorado Boulder. Samples for filter-passing metals and major elements analysis were filtered with 0.45 μm cellulose acetate filters within 48 h of collection. Unfiltered and filtered 125 mL subsamples were acidified to 3% HNO<sub>3</sub> (trace metal grade) and stored at 4°C in low-density polyethylene bottles. Total metal samples (i.e., unfiltered) were acid-heat digested (3% HNO<sub>3</sub>, 65°C oven, 12 h) then filtered with 0.45 μm cellulose acetate filters. Particulate concentrations were obtained by subtracting filter-passing concentration from total concentration.

Elemental analysis was performed using an Agilent 7900 ICP-MS with high matrix introduction. Either helium or hydrogen gas was used in a collision cell to reduce molecular ion interferences. All samples and standards were prepared in 3% nitric acid (HNO<sub>3</sub>). Internal standardization (Agilent 5188-6564) was conducted by continuous addition before sample introduction (recovery 70-130%). Samples with internal standard recovery outside of the accepted range were diluted and reanalyzed. The instrument was tuned and calibrated daily. The initial calibration was verified using an independent standard (recovery 90-110%). Quality control samples were measured every 10-15 samples, including continuous calibration verification (recovery 90-110%), continuous calibration blank (less than method reporting limit), and spectral interference check (recovery 85-115%). Analytical duplicates and matrix spikes were analyzed every 10-15 samples (relative percent difference < 20%, spike recovery 75-125%, respectively). Additional analytical details on gas modes for each element, tune modes, RF power settings, and gas flow rates are provided in Table **S2**–Table **S4**).

Hardness (as mg/L CaCO<sub>3</sub>) was used to calculate EPA aquatic life criteria when applicable and was calculated in Equation S1. Concentrations of Ca and Mg are in mg/L.

$$Hardness = \frac{[Ca]}{1000} \times 2.497 + \frac{[Mg]}{1000} \times 4.118$$
 Eqn. S1

Method settings for the elemental analysis are summarized in Table **S2**. The instrument was auto tuned with a 10-ppb tuning standard (Agilent 5188-6564) in 3% HNO<sub>3</sub> solution before each batch. Two gas modes were analyzed sequentially with a stabilization period between each one. Table S3

summarizes the acquisition parameters for each element. The concentration of lead was calculated as the sum of three masses (206, 207, and 208). Method detection limits were calculated following EPA method 6020b (EPA, 2014). A spectral interference standard was a mixture of Interference Check Solution A (Agilent 5188-6526) and Interference Check Solution B (SPEX CL-INT-B1) that had the final concentrations shown in Table S4. Matrix spikes were prepared targeting a spiked concentration at least 50% of the unfortified concentration.

#### 1.5.2. Analysis Performed at U.S. Geological Survey, Boulder, Colorado

Major cations were analyzed using a Perkin Elmer Optima 5300 inductively coupled plasmaoptical emission spectroscopy (ICP-OES) and trace elements and rare earth elements were analyzed using a Perkin Elmer Nexion 300Q inductively coupled plasma-mass spectrometry (ICP-MS). Sample results represent the mean of triplicate analysis and checked with quality control samples (QC) that represented approximately 50% of the analysis run. QC for both ICP-OES and ICP-MS analyses consists of calibration standards, blanks, interference standards, blanks spike, and standard reference materials including National Institute of Standards and Technology 1645d, Environment and Climate Change Canada, USGS T standards T201, T205, T209, T213, T215, T219, T221, T223, T227, T231, T233, M206, and M220. Rare earth standards include PPREE and SCREE in addition to several of the USGS T standards previously listed. Elements were calibrated using between 4 and 7 standards for most elements and detection limits were calculated for the run based on n = 18 blanks. More information and the analytical methods for both major cations and trace elements and rare earth elements are described in detail in Roth, et al. 2022.

| Gas Mode                    | He   | H <sub>2</sub> |
|-----------------------------|------|----------------|
| Tune Mode                   | Auto | Auto           |
| RF Power (W)                | 1600 | 1600           |
| Dilution gas (L/min)        | 0.26 | 0.26           |
| Auxiliary gas (L/min)       | 0.9  | 0.9            |
| Cell gas flow rate (mL/min) | 5.0  | 6.0            |
| Energy discriminator (mV)   | 3.7  | 3.7            |

**Table S2.** Instrument tune parameters for each gas mode measured sequentially.

| Name | Gas<br>Mode    | Analyte<br>Mass | Integration<br>Time (s) | ISTD<br>Mass | Method<br>Reporting<br>Limit (µg/L) |
|------|----------------|-----------------|-------------------------|--------------|-------------------------------------|
| Na   | He             | 23              | 0.3                     | 45           | 100                                 |
| Mg   | He             | 24              | 0.3                     | 45           | 30                                  |
| Al   | He             | 27              | 0.3                     | 45           | 10                                  |
| K    | He             | 39              | 0.3                     | 45           | 400                                 |
| Ca   | H <sub>2</sub> | 40              | 0.3                     | 45           | 10                                  |
| V    | He             | 51              | 0.3                     | 45           | 1                                   |
| Cr   | He             | 52              | 0.3                     | 45           | 3                                   |
| Mn   | H <sub>2</sub> | 55              | 0.6                     | 45           | 0.1                                 |
| Fe   | H <sub>2</sub> | 56              | 0.6                     | 45           | 10                                  |
| Со   | He             | 59              | 0.6                     | 45           | 0.1                                 |
| Ni   | He             | 60              | 0.6                     | 72           | 0.5                                 |
| Cu   | He             | 63              | 0.6                     | 72           | 1                                   |
| Zn   | He             | 66              | 0.9                     | 72           | 2                                   |
| As   | He             | 75              | 1.2                     | 72           | 1                                   |
| Se   | H <sub>2</sub> | 78              | 1.2                     | 72           | 2                                   |
| Cd   | He             | 111             | 0.3                     | 115          | 0.1                                 |
| Ba   | He             | 137             | 0.3                     | 159          | 0.5                                 |
| TI   | He             | 205             | 0.3                     | 209          | 0.5                                 |
| Pb   | He             | 208             | 0.3                     | 209          | 0.3                                 |
| U    | He             | 238             | 0.3                     | 209          | 0.1                                 |

**Table S3.** Data acquisition parameters and method detection limits for each element.

**Table S4.** Elemental composition of spectral interference check solution.

| Element               | Concentration (ppb) |
|-----------------------|---------------------|
| CI                    | 80,000              |
| Са                    | 12,000              |
| Fe, Na                | 10,000              |
| Al, K, Mg             | 4,000               |
| Ti                    | 80                  |
| Co, Cr, Cu, Mn, Ni, V | 40                  |
| As, Cd, Se, Zn        | 20                  |
| Ag                    | 10                  |

## 1.6. Total Mercury (THg)

Water samples for analysis of total Hg were collected in acid-cleaned 500-mL fluorinated ethylene propylene (FEP) bottles and transported on ice. Samples were completely oxidized for analysis of THg.<sup>36</sup> Samples were quantified for Hg with a cold-vapor atomic fluorescence spectrometer (Brooks and Rand Model III; USEPA Method 1631E, U.S. EPA, 2002).

# 2. Results

### 2.1. Water Quality Statistics

This section reports the aggregate statistics for the water quality, including bulk water measurements (Table S5) total mercury (Table S6), and elemental analysis (Table S7). Table S8 reports the percentage of each element that was above the method detection limit (MDL).

**Table S5.** Overview of dissolved organic carbon (DOC), total suspended solids (TSS), nitrate, sulfate, and pH results for each watershed and end-member sites.

|             |        | Aquatic<br>Park | Big C | Chico ( | Creek | B     | utte Cre | ek   | Cle  | ear Cree | ek   | D    | ry Cree | ek   | Little<br>Butte<br>Creek<br>Trailer<br>Park |
|-------------|--------|-----------------|-------|---------|-------|-------|----------|------|------|----------|------|------|---------|------|---------------------------------------------|
| Parameter   |        |                 | Med   | Min     | Max   | Med   | Min      | Max  | Med  | Min      | Max  | Med  | Min     | Max  |                                             |
|             | n =    | 2               |       | 31      |       |       | 43       |      |      | 34       |      |      | 19      |      | 2                                           |
| DOC         | (mg/L) | 0.80, 0.73      | 2.06  | 0.55    | 5.89  | 1.80  | 0.38     | 4.68 | 4.61 | 1.48     | 11.8 | 4.49 | 1.29    | 9.16 | 3.73,<br>2.73                               |
| тее         | n =    | 1               |       | 9       |       |       | 11       |      |      | 12       |      |      | 13      |      | 1                                           |
| 155         | (mg/L) | 187             | 14.5  | 1.00    | 112   | 12.7  | 1.87     | 436  | 34.8 | 2.81     | 315  | 257  | 1.32    | 699  | 78.6                                        |
| Anions      | n =    | 1               |       | 24      |       |       | 34       |      |      | 28       |      |      | 14      |      | 1                                           |
| Nitrate (N) | (mg/L) | 3.91            | 0.020 | 0.00    | 1.43  | 0.682 | 0.044    | 2.46 | 2.57 | 0.346    | 8.19 | 1.90 | 0.105   | 5.67 | 4.59                                        |
| Sulfate     | (mg/L) | 1.29            | 1.53  | 0.00    | 6.00  | 2.04  | 0.880    | 5.86 | 3.33 | 1.69     | 10.6 | 7.79 | 0.730   | 14.1 | 68.9                                        |
|             | n =    | 2               |       | 24      |       |       | 36       |      |      | 26       |      |      | 14      |      | 2                                           |
| рН          |        | 7.13, 7.81      | 7.61  | 6.85    | 8.12  | 7.56  | 6.87     | 9.46 | 7.63 | 6.99     | 8.29 | 7.38 | 7.05    | 7.66 | 7.18,<br>7.25                               |

**Table S6.** Summary of total Hg results for watersheds Big Chico Creek, Butte Creek, Clear Creek, and Dry Creek. The number of samples (Tot n=) as well as the median (med), minimum (min), and maximum (max) concentrations are reported for each watershed.

|            | Big Chico Creek |      |      | Bu   | itte Cre | ek   | C    | ear Cre | ek   | Dry Creek |      |     |  |
|------------|-----------------|------|------|------|----------|------|------|---------|------|-----------|------|-----|--|
| Total n =  | 8               |      |      |      | 8        |      |      | 9       |      | 13        |      |     |  |
|            | Med             | Min  | Max  | Med  | Min      | Max  | Med  | Min     | Max  | Med       | Min  | Max |  |
| THg (ng/L) | 2.06            | 1.29 | 5.70 | 7.32 | 1.52     | 93.0 | 3.09 | 0.870   | 11.6 | 51.2      | 2.04 | 665 |  |

**Table S7.** Overview of major and trace metals for watersheds Big Chico Creek, Butte Creek, Clear Creek, and Dry Creek and endmember sites Paul Byrne Aquatic Park and the Little Butte Creek Trailer Park. The number of total metals samples (Total n), filtered metals samples (Filter-passing n), as well as the median (med), minimum (min), and maximum (max) concentrations for both total and filter-passing (Filter) fractions are reported.

|                             | Aquatic Park |      | Aquatic Park Big Chico Creek |      | Butte Creek |       |       | Clear Creek |       |       | C    | ry Cree | k     | Little Butte Creek<br>Trailer Park |       |       |       |       |
|-----------------------------|--------------|------|------------------------------|------|-------------|-------|-------|-------------|-------|-------|------|---------|-------|------------------------------------|-------|-------|-------|-------|
| Total n =                   |              | 4    |                              |      | 27          |       |       | 39          |       |       | 28   |         |       | 18                                 |       |       | 1     |       |
| Filter-<br>passing n 4<br>= |              |      | 30                           |      | 41          |       | 34    |             |       |       | 19   |         | 2     |                                    |       |       |       |       |
| Element                     | Med.         | Min  | Мах                          | Med. | Min         | Max   | Med.  | Min         | Max   | Med.  | Min  | Max     | Med.  | Min                                | Max   | Med.  | Min   | Max   |
| Ca (Total)                  | 4920         | 3420 | 7300                         | 8160 | 5404        | 16300 | 10300 | 558         | 24400 | 15200 | 3640 | 23300   | 15900 | 9140                               | 22000 | 28100 | 28100 | 28100 |
| Ca (Filter)                 | 4090         | 2920 | 5530                         | 7870 | 4560        | 15800 | 9490  | 5110        | 14100 | 14500 | 7120 | 22700   | 12600 | 6180                               | 20300 | 17700 | 12000 | 23400 |
| K (Total)                   | 542          | 598  | 127                          | 662  | 477         | 1490  | 630   | 17.5        | 1200  | 1870  | 203  | 4560    | 1690  | 76.6                               | 2500  | 2840  | 2840  | 2840  |
| K (Filter)                  | 721          | 475  | 1030                         | 660  | 415         | 1600  | 739   | 454         | 1460  | 1930  | 1050 | 4280    | 1610  | 853                                | 2430  | 1930  | 1520  | 2340  |
| Mg (Total)                  | 2640         | 1790 | 3140                         | 4670 | 2940        | 9430  | 5050  | 256         | 7360  | 8300  | 1990 | 12000   | 8390  | 4800                               | 12400 | 8740  | 8740  | 8740  |
| Mg (Filter)                 | 2320         | 1610 | 2740                         | 4450 | 2360        | 9090  | 4740  | 2480        | 6170  | 8210  | 3750 | 12000   | 8030  | 3060                               | 11800 | 6640  | 5530  | 7760  |
| Na (Total)                  | 2610         | 1890 | 2920                         | 4080 | 2210        | 15700 | 3380  | 933         | 5740  | 7080  | 1460 | 8430    | 5270  | 2560                               | 7440  | 4570  | 4570  | 4570  |
| Na (Filter)                 | 2374         | 1710 | 2950                         | 4100 | 2000        | 15300 | 3510  | 1770        | 4710  | 6700  | 2970 | 9500    | 5440  | 2080                               | 6920  | 3850  | 3720  | 3990  |
| Al (Total)                  | 2690         | 610  | 5000                         | 166  | 5.99        | 2300  | 733   | 8.12        | 10900 | 532   | 8.40 | 10300   | 1480  | 11.5                               | 14200 | 2670  | 2670  | 2670  |
| AI (Filter)                 | 21.7         | 9.99 | 69.7                         | 21.6 | 3.37        | 145   | 36.1  | 3.27        | 153   | 85.2  | 6.53 | 528     | 13.94 | 4.87                               | 61.73 | 172.8 | 7.82  | 338   |
| Fe (Total)                  | 1800         | 386  | 3250                         | 125  | 15          | 1550  | 557   | 20.7        | 7490  | 528   | 45   | 10000   | 3670  | 408                                | 27700 | 2470  | 2470  | 2470  |
| Fe (Filter)                 | 25.0         | 11.3 | 40.5                         | 22.1 | 4.04        | 127   | 37.4  | 4.67        | 189   | 139   | 16.2 | 4030    | 189   | 18.0                               | 456   | 132   | 6.55  | 257   |
| Mn (Total)                  | 75.0         | 25.7 | 157                          | 8.47 | 1.91        | 85.8  | 31.6  | 2.85        | 307   | 29.8  | 9.56 | 599     | 192   | 80.5                               | 4549  | 117   | 117   | 117   |
| Mn (Filter)                 | 6.96         | 1.34 | 16.3                         | 1.25 | 0.45        | 3.31  | 2.19  | 0.37        | 10.8  | 5.46  | 0.27 | 552     | 40.16 | 0.36                               | 170   | 10.83 | 5.33  | 16.3  |
| Ba (Total)                  | 42.3         | 20.2 | 68.3                         | 5.34 | 3.52        | 23.8  | 10.2  | 1.55        | 69.3  | 32.0  | 8.55 | 78.1    | 57.3  | 22.3                               | 254   | 63.8  | 63.8  | 63.8  |

|                             | Aquatic Park |       |       | Aquatic Park |       |       | Big   | Chico C | reek | В     | Butte Creek |      | Clear Creek |       |       | Dry Creek |       |       | Little Butte Creek<br>Trailer Park |  |  |
|-----------------------------|--------------|-------|-------|--------------|-------|-------|-------|---------|------|-------|-------------|------|-------------|-------|-------|-----------|-------|-------|------------------------------------|--|--|
| Total n =                   |              | 4     |       |              | 27    |       |       | 39      |      |       | 28          |      |             | 18    |       |           | 1     |       |                                    |  |  |
| Filter-<br>passing n 4<br>= |              |       | 30    |              |       | 41    |       |         | 34   |       |             |      | 19          |       | 2     |           |       |       |                                    |  |  |
| Element                     | Med.         | Min   | Max   | Med.         | Min   | Max   | Med.  | Min     | Max  | Med.  | Min         | Max  | Med.        | Min   | Max   | Med.      | Min   | Мах   |                                    |  |  |
| Ba (Filter)                 | 24.5         | 15.8  | 31.3  | 9.59         | 5.44  | 59.1  | 10.1  | 5.17    | 53.8 | 24.9  | 19.9        | 47.8 | 32.4        | 22.2  | 43.2  | 34.3      | 28.7  | 40.0  |                                    |  |  |
| Co (Total)                  | 1.71         | 0.460 | 3.11  | 0.110        | 0.020 | 4.00  | 0.750 | 0.030   | 55.9 | 0.650 | 0.120       | 9.60 | 4.22        | 0.400 | 27.8  | 2.66      | 2.66  | 2.66  |                                    |  |  |
| Co (Filter)                 | 0.126        | 0.090 | 0.206 | 0.030        | 0.000 | 0.110 | 0.060 | 0.010   | 3.20 | 0.230 | 0.080       | 8.38 | 0.32        | 0.080 | 0.610 | 0.170     | 0.170 | 0.180 |                                    |  |  |
| Cr (Total)                  | 5.07         | 1.65  | 10.5  | 1.11         | 0.63  | 8.4   | 3.41  | 0.64    | 59.8 | 3.38  | 0.640       | 55.9 | 8.70        | 0.070 | 40.6  | 12.3      | 12.3  | 12.3  |                                    |  |  |
| Cr (Filter)                 | 0.462        | 0.45  | 5.38  | 0.600        | 0.37  | 3.91  | 0.74  | 0.22    | 2.21 | 0.920 | 0.250       | 18.6 | 0.580       | 0.340 | 3.01  | 1.75      | 1.25  | 2.26  |                                    |  |  |
| Cu (Total)                  | 5.56         | 0.900 | 24.4  | 0.89         | 0.01  | 4.39  | 1.9   | 0.2     | 22.6 | 2.75  | 0.030       | 36.6 | 10.3        | 0.040 | 41.9  | 25.0      | 25.0  | 25.0  |                                    |  |  |
| Cu (Filter)                 | 7.96         | 1.78  | 8.94  | 1.46         | 0.22  | 9.17  | 2.96  | 0.41    | 20.2 | 8.49  | 1.55        | 35.5 | 8.17        | 0.910 | 21.3  | 10.9      | 8.28  | 13.5  |                                    |  |  |
| Ni (Total)                  | 3.78         | 0.85  | 6.98  | 0.900        | 0.27  | 5.14  | 3.26  | 0.39    | 27.6 | 3.96  | 0.840       | 28.4 | 13.4        | 1.05  | 47.9  | 11.3      | 11.3  | 11.3  |                                    |  |  |
| Ni (Filter)                 | 0.546        | 0.200 | 0.687 | 0.49         | 0.32  | 3.71  | 0.83  | 0.29    | 1.69 | 2.37  | 0.900       | 17.6 | 2.50        | 0.750 | 4.61  | 1.09      | 0.980 | 1.19  |                                    |  |  |
| Pb (Total)                  | 3.54         | 0.800 | 14.9  | 0.07         | 0.01  | 1.91  | 0.55  | 0.03    | 7.38 | 0.550 | 0.030       | 6.52 | 2.02        | 0.070 | 10.2  | 6.45      | 6.45  | 6.45  |                                    |  |  |
| Pb (Filter)                 | 0.406        | 0.100 | 0.558 | 0.09         | 0.02  | 3.44  | 0.19  | 0.02    | 0.69 | 0.46  | 0.060       | 2.80 | 0.510       | 0.090 | 2.81  | 0.440     | 0.440 | 0.450 |                                    |  |  |
| Zn (Total)                  | 189          | 12.7  | 258   | 8.07         | 3.02  | 166   | 42.3  | 2.99    | 1940 | 16.9  | 2.36        | 693  | 141         | 3.54  | 478   | 1080      | 1080  | 1080  |                                    |  |  |
| Zn (Filter)                 | 12.9         | 7.32  | 81.0  | 2.98         | 0.900 | 44.9  | 4.52  | 0.260   | 30.5 | 5.37  | 1.06        | 110  | 2.77        | 0.880 | 18.6  | 21.1      | 20.0  | 22.2  |                                    |  |  |

|             | Aquatic Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aquatic Park Big Chico Creek                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                             | Butte Creek                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         | Clear Creek                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     | Dry Creek                                                                                                                                                                                                               |                                                                                                                                                                                             |                                                                                                                                                                 | Little Butte Creek<br>Trailer Park                                                                                                  |                                                                                                         |                                                                             |                                                 |                     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| Total n     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                 | 39                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         | 18                                                                                                                                                                                          |                                                                                                                                                                 | 1                                                                                                                                   |                                                                                                         |                                                                             |                                                 |                     |
| Filtered n  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     | 41                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 | 34                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 | 19                                                                                                                                  |                                                                                                         | 2                                                                           |                                                 |                     |
| Element     | Med.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Мах                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Med.                                                                                                                                                                                                                                                                                                                                                                                                                        | Min                                                                                                                                                                                                                                                                                                                                                                                             | Мах                                                                                                                                                                                                                                                                                                                                                                 | Med.                                                                                                                                                                                                                                                                                                                                    | Min                                                                                                                                                                                                                                                                                                         | Мах                                                                                                                                                                                                                                                                             | Med.                                                                                                                                                                                                                                                | Min                                                                                                                                                                                                                     | Мах                                                                                                                                                                                         | Med.                                                                                                                                                            | Min                                                                                                                                 | Мах                                                                                                     | Med.                                                                        | Min                                             | Мах                 |
| As (Total)  | <mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<></td></mdl<>                                              | <mdl< td=""><td>11.6</td><td>11.6</td><td>11.6</td></mdl<>                                              | 11.6                                                                        | 11.6                                            | 11.6                |
| As (Filter) | <mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<></td></mdl<>                                              | <mdl< td=""><td><mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<></td></mdl<>                                              | <mdl< td=""><td>6.82</td><td>6.82</td><td>6.82</td></mdl<>                                              | 6.82                                                                        | 6.82                                            | 6.82                |
| V (Total)   | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.18                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.84                                                                                                                                                                                                                                                                                                                                                                                            | 9.78                                                                                                                                                                                                                                                                                                                                                                | 4.30                                                                                                                                                                                                                                                                                                                                    | 2.05                                                                                                                                                                                                                                                                                                        | 21.6                                                                                                                                                                                                                                                                            | 11.2                                                                                                                                                                                                                                                | 2.74                                                                                                                                                                                                                    | 33.7                                                                                                                                                                                        | 21.1                                                                                                                                                            | 3.44                                                                                                                                | 49.8                                                                                                    | 13.3                                                                        | 13.3                                            | 13.3                |
| V (Filter)  | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>3.35</td><td>2.05</td><td>5.97</td><td>2.28</td><td>2.01</td><td>3.53</td><td>8.48</td><td>4.08</td><td>19.3</td><td>2.47</td><td>2.04</td><td>3.68</td><td>4.97</td><td>4.15</td><td>5.79</td></mdl<></td></mdl<></td></mdl<>                                                                                                                                                                                                                                  | <mdl< td=""><td><mdl< td=""><td>3.35</td><td>2.05</td><td>5.97</td><td>2.28</td><td>2.01</td><td>3.53</td><td>8.48</td><td>4.08</td><td>19.3</td><td>2.47</td><td>2.04</td><td>3.68</td><td>4.97</td><td>4.15</td><td>5.79</td></mdl<></td></mdl<>                                                                                                                                                                                                                                  | <mdl< td=""><td>3.35</td><td>2.05</td><td>5.97</td><td>2.28</td><td>2.01</td><td>3.53</td><td>8.48</td><td>4.08</td><td>19.3</td><td>2.47</td><td>2.04</td><td>3.68</td><td>4.97</td><td>4.15</td><td>5.79</td></mdl<>                                                                                                                                                                                                                                  | 3.35                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.05                                                                                                                                                                                                                                                                                                                                                                                            | 5.97                                                                                                                                                                                                                                                                                                                                                                | 2.28                                                                                                                                                                                                                                                                                                                                    | 2.01                                                                                                                                                                                                                                                                                                        | 3.53                                                                                                                                                                                                                                                                            | 8.48                                                                                                                                                                                                                                                | 4.08                                                                                                                                                                                                                    | 19.3                                                                                                                                                                                        | 2.47                                                                                                                                                            | 2.04                                                                                                                                | 3.68                                                                                                    | 4.97                                                                        | 4.15                                            | 5.79                |
| Cd (Total)  | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<> | <mdl< td=""></mdl<> |
| Cd (Filter  | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<> | <mdl< td=""></mdl<> |
| U (Total)   | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<> | <mdl< td=""></mdl<> |
| U (Filter)  | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<> | <mdl< td=""></mdl<> |
| TI (Total)  | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<> | <mdl< td=""></mdl<> |
| TI (Filter) | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<> | <mdl< td=""></mdl<> |
| Se (Total)  | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<> | <mdl< td=""></mdl<> |
| Se (Filter) | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<> | <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<> | <mdl< td=""></mdl<> |

|       | Gammala | Aquatic Park  | Big Chico   | Butte Creek | Clear Creek | Dry Creek | Little Butte Creek |
|-------|---------|---------------|-------------|-------------|-------------|-----------|--------------------|
| Metal | Sample  | Aquatic I ark | Oleek       | % of Sample | S Below MDI | Diy Oleek |                    |
| metar | Filter- |               |             |             |             |           |                    |
| AI    | passing | 0             | 10          | 4.9         | 0           | 5.3       | 0                  |
| AI    | Total   | 0             | 0           | 0           | 0           | 0         | 0                  |
|       | Filter- |               |             |             |             |           |                    |
| As    | passing | 100           | 100         | 100         | 100         | 100       | 50                 |
| As    | Total   | 100           | 100         | 100         | 100         | 100       | 0                  |
|       | Filter- |               |             |             |             |           |                    |
| Ba    | passing | 0             | 0           | 0           | 0           | 0         | 0                  |
| Ba    | Total   | 0             | 0           | 2.6         | 0           | 0         | 0                  |
| 0.    | Filter- | 0             | 0           |             |             | 0         | 0                  |
| Ca    | passing | 0             | 0           | 0           | 0           | 0         | 0                  |
| Ca    |         | 0             | 0           | 0           | 0           | 0         | 0                  |
| Cd    | Filter- | 100           | 96.7        | 100         | 100         | 100       | 100                |
| Cd    | Total   | 100           | 100         | 100         | 100         | 100       | 100                |
|       | Filtor- | 100           | 100         | 100         | 100         | 100       | 100                |
| Co    | passing | 100           | 100         | 97.6        | 94.1        | 100       | 100                |
| Co    | Total   | 50            | 96.3        | 74.4        | 85.7        | 44.4      | 0                  |
|       | Filter- |               |             |             |             |           |                    |
| Cr    | passing | 75            | 100         | 100         | 97.1        | 100       | 100                |
| Cr    | Total   | 50            | 92.6        | 64.1        | 60.7        | 50        | 0                  |
|       | Filter- |               |             |             |             |           |                    |
| Cu    | passing | 25            | 60          | 41.5        | 8.8         | 10.5      | 0                  |
| Cu    | Total   | 25            | 85.2        | 56.4        | 32.1        | 33.3      | 0                  |
| _     | Filter- | 100           | 00 <b>T</b> |             |             |           | 50                 |
| Fe    | passing | 100           | 96.7        | 90.2        | 32.4        | 36.8      | 50                 |
| Fe    | Iotal   | 0             | 44.4        | 17.9        | 25          | 0         | 0                  |
| ĸ     | Filter- | 0             | 0           | 0           | 0           | 0         | 0                  |
| ĸ     | Total   | 50            | 0           | 22.1        | 26          | 22.2      | 0                  |
|       | Filtor  | 50            | 0           | 23.1        | 5.0         | 22.2      | 0                  |
| Ma    | passing | 0             | 0           | 0           | 0           | 0         | 0                  |
| Ma    | Total   | 0             | 0           | 0           | 0           | 0         | 0                  |
|       | Filter- | <u> </u>      |             |             |             | Ŭ         |                    |
| Mn    | passing | 0             | 33.3        | 12.2        | 2.9         | 5.3       | 0                  |
| Mn    | Total   | 0             | 0           | 0           | 0           | 0         | 0                  |
|       | Filter- |               |             |             |             |           |                    |
| Na    | passing | 0             | 0           | 0           | 0           | 0         | 0                  |
| Na    | Total   | 0             | 0           | 2.6         | 0           | 0         | 0                  |
|       | Filter- |               |             |             |             |           |                    |
| Ni    | passing | 100           | 96.7        | 100         | 76.5        | 63.2      | 100                |
| Ni    | Total   | 50            | 88.9        | 43.6        | 46.4        | 33.3      | 0                  |
|       | Filter- | 100           | 06.7        | 100         | 07.4        | 00 F      | 100                |
|       | passing | 100           | 90.7        | 700         | 97.1        | 89.5      | 100                |
|       | lotai   | 25            | 100         | 79.5        | 89.3        | 50        | U                  |

 Table S8. Percent of samples below the MDL for each metal in each watershed.

|    | Filter- |     |      |      |      |      |     |
|----|---------|-----|------|------|------|------|-----|
| Se | passing | 100 | 100  | 100  | 100  | 100  | 100 |
| Se | Total   | 100 | 100  | 100  | 100  | 100  | 100 |
|    | Filter- |     |      |      |      |      |     |
| TI | passing | 100 | 100  | 100  | 100  | 100  | 100 |
| TI | Total   | 100 | 100  | 100  | 100  | 100  | 100 |
|    | Filter- |     |      |      |      |      |     |
| U  | passing | 100 | 100  | 100  | 100  | 100  | 100 |
| U  | Total   | 100 | 100  | 100  | 100  | 100  | 100 |
|    | Filter- |     |      |      |      |      |     |
| V  | passing | 100 | 3.3  | 48.8 | 2.9  | 31.6 | 0   |
| V  | Total   | 25  | 0    | 10.3 | 3.6  | 16.7 | 0   |
|    | Filter- |     |      |      |      |      |     |
| Zn | passing | 0   | 70   | 48.8 | 26.5 | 73.7 | 0   |
| Zn | Total   | 0   | 14.8 | 5.1  | 3.6  | 11.1 | 0   |

### 2.2. Mann-Whitney comparison tests

This section contains statistical test results for Mann-Whitney comparison tests by watershed (Table S9 and Table S11), filter cutoff (Table S10), and pre- vs. post-fire (Table S12).

| Parameter | Watershed 1     | Watershed 2 | p -Value |
|-----------|-----------------|-------------|----------|
| DOC       | Big Chico Creek | Butte Creek | 0.103    |
| DOC       | Big Chico Creek | Clear Creek | 4.78E-06 |
| DOC       | Big Chico Creek | Dry Creek   | 7.18E-06 |
| DOC       | Butte Creek     | Clear Creek | 2.97E-09 |
| DOC       | Butte Creek     | Dry Creek   | 1.44E-07 |
| DOC       | Clear Creek     | Dry Creek   | 0.738    |
| Hardness  | Big Chico Creek | Butte Creek | 0.822    |
| Hardness  | Big Chico Creek | Clear Creek | 6.15E-06 |
| Hardness  | Big Chico Creek | Dry Creek   | 3.79E-03 |
| Hardness  | Butte Creek     | Clear Creek | 1.15E-09 |
| Hardness  | Butte Creek     | Dry Creek   | 1.06E-03 |
| Hardness  | Clear Creek     | Dry Creek   | 0.550    |
| TSS       | Big Chico Creek | Butte Creek | 2.54E-04 |
| TSS       | Big Chico Creek | Clear Creek | 6.75E-05 |
| TSS       | Big Chico Creek | Dry Creek   | 1.85E-05 |
| TSS       | Butte Creek     | Clear Creek | 0.654    |
| TSS       | Butte Creek     | Dry Creek   | 0.0300   |
| TSS       | Clear Creek     | Dry Creek   | 0.124    |
| Nitrate   | Big Chico Creek | Butte Creek | 2.47E-03 |
| Nitrate   | Big Chico Creek | Clear Creek | 5.11E-09 |
| Nitrate   | Big Chico Creek | Dry Creek   | 3.96E-04 |
| Nitrate   | Butte Creek     | Clear Creek | 1.95E-10 |
| Nitrate   | Butte Creek     | Dry Creek   | 2.93E-03 |
| Nitrate   | Clear Creek     | Dry Creek   | 3.51E-02 |
| Sulfate   | Big Chico Creek | Butte Creek | 7.98E-02 |
| Sulfate   | Big Chico Creek | Clear Creek | 1.98E-05 |
| Sulfate   | Big Chico Creek | Dry Creek   | 7.52E-05 |
| Sulfate   | Butte Creek     | Clear Creek | 2.29E-05 |
| Sulfate   | Butte Creek     | Dry Creek   | 6.37E-06 |
| Sulfate   | Clear Creek     | Dry Creek   | 6.24E-03 |

| Table S9. Mann-Whitne | ey test results for watershee | d comparisons of non-metals |
|-----------------------|-------------------------------|-----------------------------|
|-----------------------|-------------------------------|-----------------------------|

| Metal | Filter<br>Size 1 | Filter<br>Size 2 | p-Value  | Meta | Filter<br>al Size 1 |
|-------|------------------|------------------|----------|------|---------------------|
| AI    | 0.22             | 0.45             | 0.015    | Fe   | 0.22                |
| AI    | 0.22             | 0.8              | 1.05E-03 | Fe   | 0.22                |
| AI    | 0.22             | 1.2              | 4.28E-04 | Fe   | 0.22                |
| AI    | 0.45             | 0.8              | 0.190    | Fe   | 0.45                |
| AI    | 0.45             | 1.2              | 0.068    | Fe   | 0.45                |
| AI    | 0.8              | 1.2              | 0.804    | Fe   | 0.8                 |
| Со    | 0.22             | 0.45             | 0.505    | Mn   | 0.22                |
| Co    | 0.22             | 0.8              | 0.308    | Mn   | 0.22                |
| Со    | 0.22             | 1.2              | 0.234    | Mn   | 0.22                |
| Со    | 0.45             | 0.8              | 0.544    | Mn   | 0.45                |
| Со    | 0.45             | 1.2              | 0.467    | Mn   | 0.45                |
| Со    | 0.8              | 1.2              | 0.783    | Mn   | 0.8                 |
| Cr    | 0.22             | 0.45             | 0.178    | Ni   | 0.22                |
| Cr    | 0.22             | 0.8              | 0.025    | Ni   | 0.22                |
| Cr    | 0.22             | 1.2              | 0.015    | Ni   | 0.22                |
| Cr    | 0.45             | 0.8              | 0.235    | Ni   | 0.45                |
| Cr    | 0.45             | 1.2              | 0.168    | Ni   | 0.45                |
| Cr    | 0.8              | 1.2              | 0.871    | Ni   | 0.8                 |
| Cu    | 0.22             | 0.45             | 0.426    | Pb   | 0.22                |
| Cu    | 0.22             | 0.8              | 0.319    | Pb   | 0.22                |
| Cu    | 0.22             | 1.2              | 0.285    | Pb   | 0.22                |
| Cu    | 0.45             | 0.8              | 0.662    | Pb   | 0.45                |
| Cu    | 0.45             | 1.2              | 0.512    | Pb   | 0.45                |
| Cu    | 0.8              | 1.2              | 0.890    | Pb   | 0.8                 |

**Table S10.** Mann-Whitney test results for metals passing through filters of different size membranes.

Filter Size 2

0.45

0.8

1.2 0.8

1.2

1.2 0.45

> 0.8 1.2

8.0

1.2

1.2

0.45

0.8 1.2

8.0

1.2

1.2 0.45

8.0

1.2 0.8

1.2 1.2 p-Value

0.118

0.012

0.167

0.198 0.818

0.739 0.452

0.396

0.610

0.528

0.782

0.797 0.544

0.409

0.661

0.526

0.068

4.16E-03 4.47E-03

> 0.225 0.174

0.836

| Metal | Total vs.<br>Filtered | Watershed 1     | Watershed 2 | p-Value  |
|-------|-----------------------|-----------------|-------------|----------|
| Mn    | Total                 | Big Chico Creek | Butte Creek | 5.39E-03 |
| Mn    | Total                 | Big Chico Creek | Clear Creek | 1.09E-11 |
| Mn    | Total                 | Big Chico Creek | Dry Creek   | 1.75E-06 |
| Mn    | Total                 | Butte Creek     | Clear Creek | 7.38E-09 |
| Mn    | Total                 | Butte Creek     | Dry Creek   | 5.87E-06 |
| Mn    | Total                 | Clear Creek     | Dry Creek   | 4.00E-03 |
| Со    | Total                 | Big Chico Creek | Butte Creek | 5.59E-04 |
| Со    | Total                 | Big Chico Creek | Clear Creek | 8.44E-16 |
| Со    | Total                 | Big Chico Creek | Dry Creek   | 2.07E-11 |
| Co    | Total                 | Butte Creek     | Clear Creek | 3.23E-10 |
| Co    | Total                 | Butte Creek     | Dry Creek   | 4.24E-08 |
| Co    | Total                 | Clear Creek     | Dry Creek   | 1.41E-01 |
| Fe    | Total                 | Big Chico Creek | Butte Creek | 5.98E-02 |
| Fe    | Total                 | Big Chico Creek | Clear Creek | 8.01E-12 |
| Fe    | Total                 | Big Chico Creek | Dry Creek   | 5.70E-07 |
| Fe    | Total                 | Butte Creek     | Clear Creek | 8.80E-10 |
| Fe    | Total                 | Butte Creek     | Dry Creek   | 1.11E-05 |
| Fe    | Total                 | Clear Creek     | Dry Creek   | 0.79     |
| Cu    | Total                 | Big Chico Creek | Butte Creek | 5.22E-02 |
| Cu    | Total                 | Big Chico Creek | Clear Creek | 2.09E-06 |
| Cu    | Total                 | Big Chico Creek | Dry Creek   | 1.23E-04 |
| Cu    | Total                 | Butte Creek     | Clear Creek | 8.04E-04 |
| Cu    | Total                 | Butte Creek     | Dry Creek   | 5.54E-03 |
| Cu    | Total                 | Clear Creek     | Dry Creek   | 0.80     |
| Pb    | Total                 | Big Chico Creek | Butte Creek | 0.20     |
| Pb    | Total                 | Big Chico Creek | Clear Creek | 1.28E-05 |
| Pb    | Total                 | Big Chico Creek | Dry Creek   | 7.47E-05 |
| Pb    | Total                 | Butte Creek     | Clear Creek | 2.63E-04 |
| Pb    | Total                 | Butte Creek     | Dry Creek   | 1.86E-04 |
| Pb    | Total                 | Clear Creek     | Dry Creek   | 0.54     |
| Ni    | Total                 | Big Chico Creek | Butte Creek | 2.34E-04 |
| Ni    | Total                 | Big Chico Creek | Clear Creek | 2.65E-13 |
| Ni    | Total                 | Big Chico Creek | Dry Creek   | 1.55E-09 |
| Ni    | Total                 | Butte Creek     | Clear Creek | 8.30E-14 |
| Ni    | Total                 | Butte Creek     | Dry Creek   | 6.88E-10 |
| Ni    | Total                 | Clear Creek     | Dry Creek   | 0.69     |

 Table S11. Mann-Whitney results for trace metal cross-watershed comparisons.

| Metal | Total vs.<br>Filtered | Watershed 1     | Watershed 2 | p-Value  |
|-------|-----------------------|-----------------|-------------|----------|
| Cr    | Total                 | Big Chico Creek | Butte Creek | 0.31     |
| Cr    | Total                 | Big Chico Creek | Clear Creek | 6.97E-03 |
| Cr    | Total                 | Big Chico Creek | Dry Creek   | 0.33     |
| Cr    | Total                 | Butte Creek     | Clear Creek | 6.00E-02 |
| Cr    | Total                 | Butte Creek     | Dry Creek   | 7.23E-02 |
| Cr    | Total                 | Clear Creek     | Dry Creek   | 1.69E-03 |
| Ва    | Total                 | Big Chico Creek | Butte Creek | 0.51     |
| Ва    | Total                 | Big Chico Creek | Clear Creek | 3.96E-09 |
| Ва    | Total                 | Big Chico Creek | Dry Creek   | 3.21E-07 |
| Ва    | Total                 | Butte Creek     | Clear Creek | 1.31E-11 |
| Ва    | Total                 | Butte Creek     | Dry Creek   | 6.88E-10 |
| Ва    | Total                 | Clear Creek     | Dry Creek   | 1.02E-03 |
| Zn    | Total                 | Big Chico Creek | Butte Creek | 0.29     |
| Zn    | Total                 | Big Chico Creek | Clear Creek | 7.90E-03 |
| Zn    | Total                 | Big Chico Creek | Dry Creek   | 0.40     |
| Zn    | Total                 | Butte Creek     | Clear Creek | 3.41E-02 |
| Zn    | Total                 | Butte Creek     | Dry Creek   | 0.15     |
| Zn    | Total                 | Clear Creek     | Dry Creek   | 2.90E-03 |
| Zn    | Filtered              | Big Chico Creek | Butte Creek | 4.93E-03 |
| Zn    | Filtered              | Big Chico Creek | Clear Creek | 2.05E-02 |
| Zn    | Filtered              | Big Chico Creek | Dry Creek   | 1.63E-03 |
| Zn    | Filtered              | Butte Creek     | Clear Creek | 0.46     |
| Zn    | Filtered              | Butte Creek     | Dry Creek   | 0.20     |
| Zn    | Filtered              | Clear Creek     | Dry Creek   | 0.065    |
| Ba    | Filtered              | Big Chico Creek | Butte Creek | 8.36E-04 |
| Ва    | Filtered              | Big Chico Creek | Clear Creek | 3.58E-13 |
| Ba    | Filtered              | Big Chico Creek | Dry Creek   | 2.33E-12 |
| Ва    | Filtered              | Butte Creek     | Clear Creek | 6.15E-06 |
| Ba    | Filtered              | Butte Creek     | Dry Creek   | 9.03E-08 |
| Ва    | Filtered              | Clear Creek     | Dry Creek   | 2.64E-05 |
| Cr    | Filtered              | Big Chico Creek | Butte Creek | 1.25E-03 |
| Cr    | Filtered              | Big Chico Creek | Clear Creek | 0.056    |
| Cr    | Filtered              | Big Chico Creek | Dry Creek   | 7.59E-03 |
| Cr    | Filtered              | Butte Creek     | Clear Creek | 0.65     |
| Cr    | Filtered              | Butte Creek     | Dry Creek   | 0.37     |
| Cr    | Filtered              | Clear Creek     | Dry Creek   | 0.26     |
| Cu    | Filtered              | Big Chico Creek | Butte Creek | 4.24E-04 |
| Cu    | Filtered              | Big Chico Creek | Clear Creek | 1.03E-06 |

| Metal | Total vs.<br>Filtered | Watershed 1     | Watershed 2 | p-Value  |
|-------|-----------------------|-----------------|-------------|----------|
| Cu    | Filtered              | Big Chico Creek | Dry Creek   | 3.26E-06 |
| Cu    | Filtered              | Butte Creek     | Clear Creek | 0.26     |
| Cu    | Filtered              | Butte Creek     | Dry Creek   | 0.015    |
| Cu    | Filtered              | Clear Creek     | Dry Creek   | 0.10     |
| Pb    | Filtered              | Big Chico Creek | Butte Creek | 3.10E-05 |
| Pb    | Filtered              | Big Chico Creek | Clear Creek | 7.99E-04 |
| Pb    | Filtered              | Big Chico Creek | Dry Creek   | 6.12E-05 |
| Pb    | Filtered              | Butte Creek     | Clear Creek | 0.54     |
| Pb    | Filtered              | Butte Creek     | Dry Creek   | 0.32     |
| Pb    | Filtered              | Clear Creek     | Dry Creek   | 0.14     |
| Ni    | Filtered              | Big Chico Creek | Butte Creek | 4.8E-06  |
| Ni    | Filtered              | Big Chico Creek | Clear Creek | 4.8E-06  |
| Ni    | Filtered              | Big Chico Creek | Dry Creek   | 1.1E-07  |
| Ni    | Filtered              | Butte Creek     | Clear Creek | 0.79     |
| Ni    | Filtered              | Butte Creek     | Dry Creek   | 0.016    |
| Ni    | Filtered              | Clear Creek     | Dry Creek   | 0.024    |
| Co    | Filtered              | Big Chico Creek | Butte Creek | 1.5E-03  |
| Со    | Filtered              | Big Chico Creek | Clear Creek | 5.9E-05  |
| Со    | Filtered              | Big Chico Creek | Dry Creek   | 2.1E-08  |
| Со    | Filtered              | Butte Creek     | Clear Creek | 0.95     |
| Со    | Filtered              | Butte Creek     | Dry Creek   | 3.0E-03  |
| Со    | Filtered              | Clear Creek     | Dry Creek   | 2.1E-03  |

|       |             | Pre-Fire     | Post-Fire    |          |
|-------|-------------|--------------|--------------|----------|
| Metal | Watershed   | Median (ppb) | Median (ppb) | p-Value  |
| Cr    | Clear Creek | 1.08         | 7.45         | 5.70E-03 |
| Ni    | Clear Creek | 1.34         | 5.90         | 2.34E-03 |
| Cu    | Clear Creek | 1.39         | 5.05         | 0.017    |
| Zn    | Clear Creek | 1.15         | 85.4         | 4.25E-08 |
| Pb    | Clear Creek | 0.173        | 0.958        | 0.012    |
| Cr    | Dry Creek   | 1.13         | 13.6         | 6.27E-03 |
| Ni    | Dry Creek   | 2.08         | 17.9         | 4.30E-03 |
| Cu    | Dry Creek   | 1.46         | 12.7         | 0.023    |
| Zn    | Dry Creek   | 1.11         | 159          | 1.28E-06 |
| Pb    | Dry Creek   | 0.123        | 2.69         | 2.36E-03 |

**Table S12.** Mann-Whitney results for pre-fire vs post-fire data indicating statistically significant increases in every case (p < 0.5).

2.3. Water quality time series and phase histograms

This section contains elemental time-series measured during the sampling campaign overlaid with the Butte Creek hydrograph (Figure S1–Figure S3). Figure S4 to Figure S7 compare the time-series plots for data collected post-fire to available historical data. Figure S8 and Figure S9 show histograms of particulate and filter-passing percentages by element.



Figure S1. Time-series of total metal concentrations in each watershed overlaid with the Butte Creek hydrograph (right y-axis).



Figure S2. Time-series of filter-passing metal concentrations in for each watershed overlaid with the Butte Creek hydrograph in light blue (right y-axis).



Figure S3. Time-series of particulate metal concentrations in each watershed overlaid with the Butte Creek hydrograph in light blue (right y-axis).



Figure S4. Pre-fire<sup>42</sup> and post-fire water hardness in Butte Creek.



Figure S5. Pre-fire<sup>42</sup> and post-fire water hardness in Dry Creek.



Figure S6. Pre-fire<sup>42</sup> and post-fire water hardness in Clear Creek.



Figure S7. Pre-fire<sup>42</sup> and post-fire water hardness in Big Chico Creek.



**Figure S8.** Histograms of number of samples plotted as percent filter-passing metal concentration (x-axis reads percent filtered for brevity) for each metal presented in the study. <u>"Percent filter-passing" is the filter-passing concentration divided by the unfiltered</u> <u>concentration, expressed as a percentage.</u> Colored bars represent watershed-specific data. The total number of samples and median percent filter-passing metal concentration are listed in the heading for each plot.



**Figure S9.** Histograms of number of samples grouped by percent particulate metal concentration (x-axis) calculated by subtracting measured filter-passing concentration from total concentration for available samples. The total number of samples and median percent particulate metal concentration are listed in the heading for each plot.

#### 2.4. Spearman's rank correlations

Figure S10 to Figure S18 present heat maps of pair-wise Spearman's rank correlations. The first set compares total concentrations in all watersheds combined (Figure S10), burned watersheds (Figure S11) and the unburned reference watershed (Figure S12). The second set compares the same subsets for filter-passing concentrations (Figure S13–Figure S15), and the third set compares correlations for particulate concentrations (Figure S16–Figure S18).



**Figure S10.** Heat map of Spearman correlation results for total concentrations of metals, sulfate, nitrate, DOC, pH, and TSS across all watersheds (Big Chico Creek, Butte Creek, Clear Creek, and Dry Creek). Each box contains a rho value (between -1 and 1) or is marked as not significant (n.s.). Red boxes indicate a significant positive correlation, white boxes indicate no significant correlation (p > 0.05), and blue boxes indicate significant negative correlation.



**Figure S11**. Heat map of Spearman correlation results for total concentrations of metals, sulfate, nitrate, DOC, pH, and TSS across burned watersheds only (Butte Creek, Clear Creek, and Dry Creek). Each box contains a rho value (between -1 and 1) or is marked as not significant (n.s.). Red boxes indicate a significant positive correlation, white boxes indicate no significant correlation (p > 0.05), and blue boxes indicate significant negative correlation.



**Figure S12.** Heat map of Spearman correlation results for total concentrations of metals, sulfate, nitrate, DOC, pH, and TSS for unburned reference watershed Big Chico Creek. Each box contains a rho value (between -1 and 1) or is marked as not significant (n.s.). Red boxes indicate a strong positive correlation, white boxes indicate no significant correlation (p > 0.05), and blue boxes indicate significant negative correlation.



**Figure S13.** Heat map of Spearman correlation results for filter-passing concentrations of metals, sulfate, nitrate, DOC, pH, and TSS across all watersheds (Big Chico Creek, Butte Creek, Clear Creek, and Dry Creek). Each box contains a rho value (between -1 and 1) or is marked as not significant (n.s.). Red boxes indicate a strong positive correlation, white boxes indicate no significant correlation (p > 0.05), and blue boxes indicate significant negative correlation.



**Figure S14.** Heat map of Spearman correlation results for filter-passing concentrations of metals, sulfate, nitrate, DOC, pH, and TSS in burned watersheds only (Butte Creek, Clear Creek, and Dry Creek). Each box contains a rho value (between -1 and 1) or is marked as not significant (n.s.). Red boxes indicate a strong positive correlation, white boxes indicate no significant correlation (p > 0.05), and blue boxes indicate significant negative correlation.



**Figure S15.** Heat map of Spearman correlation results for filter-passing concentrations of metals, sulfate, nitrate, DOC, pH, and TSS in unburned reference watershed Big Chico Creek. Each box contains a rho value (between -1 and 1) or is marked as not significant (n.s.). Red boxes indicate a strong positive correlation, white boxes indicate no significant correlation (p > 0.05), and blue boxes indicate significant negative correlation.



**Figure S16.** Heat map of Spearman correlation results for particulate concentrations of metals, with sulfate, nitrate, DOC, pH, and TSS concentrations across all watersheds (Big Chico Creek, Butte Creek, Clear Creek, and Dry Creek). Each box contains a rho value (between -1 and 1) or is marked as not significant (n.s.). Red boxes indicate a strong positive correlation, white boxes indicate no significant correlation (p > 0.05), and blue boxes indicate significant negative correlation.



**Figure S17.** Heat map of Spearman correlation results for particulate concentrations of metals, with sulfate, nitrate, DOC, pH, and TSS across burned watersheds only (Butte Creek, Clear Creek, and Dry Creek). Each box contains a rho value (between -1 and 1) or is marked as not significant (n.s.). Red boxes indicate a strong positive correlation, white boxes indicate no significant correlation (p > 0.05), and blue boxes indicate significant negative correlation.



**Figure S18.** Heat map of Spearman correlation results for particulate concentrations of metals, with concentrations of sulfate, nitrate, DOC, pH, and TSS in unburned reference watershed Big Chico Creek. Each box contains a rho value (between -1 and 1) or is marked as not significant (n.s.). Red boxes indicate a strong positive correlation, white boxes indicate no significant correlation (p > 0.05), and blue boxes indicate significant negative correlation.

#### 2.5. Exceedances (Table 2) continued.

**Table S13.** Summary of the number of exceedances of EPA aquatic life criteria peak recommendations (acute and chronic, EPA n.d.) for Ni and Pb in each watershed. The no. fold increase is the maximum concentration divided by the limit. A dash (-) is presented when there were no exceedances.

|       |                                 |         | Aquatic Habitat Recommendation: |          |       | Aquatic Habitat Recommendation: |          |          |       |       |
|-------|---------------------------------|---------|---------------------------------|----------|-------|---------------------------------|----------|----------|-------|-------|
|       |                                 | Samplo  |                                 | Acut     | e     |                                 |          | Chro     | nic   |       |
|       |                                 | Type    |                                 |          | Max.  |                                 |          |          | Max.  |       |
|       |                                 | Type    | No. of                          | No. Fold | Conc. | Limit                           | No. of   | No. Fold | Conc. | Limit |
| Metal | Sample Location                 |         | Exceeds.                        | Increase | (ppb) | (ppb)                           | Exceeds. | Increase | (ppb) | (ppb) |
|       | Butte Creek                     | Total   | —                               | _        | -     | _                               | 4        | 3.0      | 72.0  | 24.0  |
| Ni    | Clear Creek                     | Total   |                                 | _        | -     | -                               | 1        | 1.2      | 27.7  | 24.0  |
|       | Dry Creek                       | Total   | —                               | —        | _     | _                               | 5        | 2.5      | 43.7  | 17.8  |
|       |                                 | Filter- |                                 |          |       |                                 |          |          |       |       |
|       | Aquatic Park                    | passing | _                               | _        | -     | -                               | 2        | 1.4      | 0.56  | 0.40  |
|       |                                 | Total   | 1                               | 1.5      | 14.9  | 9.9                             | 4        | 39       | 14.9  | 0.38  |
|       | Big Chico Creek                 | Filter- |                                 |          |       |                                 |          |          |       |       |
|       |                                 | passing | —                               |          | _     | —                               | 1        | 2.6      | 3.44  | 1.29  |
|       |                                 | Total   | _                               | _        | -     | _                               | 1        | 1.5      | 1.21  | 0.65  |
|       |                                 | Filter- |                                 |          |       |                                 |          |          |       |       |
| Dh    | Butte Creek                     | passing | _                               | _        | _     | —                               | 1        | 1.1      | 1.71  | 1.57  |
| FU    |                                 | Total   | _                               | _        | _     | -                               | 16       | 8.8      | 8.71  | 0.99  |
|       |                                 | Total   | -                               | -        | -     | _                               | 5        | 4.8      | 6.52  | 1.35  |
|       | Clear Creek                     | Filter- |                                 |          |       |                                 |          |          |       |       |
|       |                                 | passing | _                               | _        |       | _                               | 4        | 3.7      | 2.80  | 0.76  |
|       |                                 | Filter- |                                 |          |       |                                 |          |          |       |       |
|       | Dry Creek                       | passing | –                               | —        | _     | —                               | 4        | 2.0      | 1.29  | 0.66  |
|       | -                               | Total   | —                               | -        | —     | —                               | 10       | 10       | 7.32  | 0.73  |
|       | Little Butte Creek Trailer Park | Total   | _                               | _        | _     | _                               | 1        | 2.3      | 6.45  | 2.80  |

#### 2.6. Principal Component Analyses

This section documents the Principal Component Analysis results. Table S14 summarizes the rotation values and variance explained for each of the PCA models. Figure S19 and Figure S20 present additional PCA models for filter-passing and particulate concentrations, respectively.

**Table S14.** Rotation values  $(\cos(\theta))$  for variables used in Principal Component Analyses, as well as variance explained by PC1, PC2, and total (summed PC1 + PC2).

|                 |          |                             |                             | Variance Explained |        |        |
|-----------------|----------|-----------------------------|-----------------------------|--------------------|--------|--------|
|                 | Variable | PC1<br>Rotation<br>(Cos(θ)) | PC2<br>Rotation<br>(Cos(θ)) | PC1                | PC2    | Total  |
| Total Trace     | AI       | 0.358                       | 0.071                       | 71.08%             | 12.26% | 83.34% |
| Metals in Butte | Ва       | 0.360                       | -0.064                      |                    |        |        |
| Oreek           | Со       | 0.208                       | 0.569                       |                    |        |        |
|                 | Cr       | 0.317                       | 0.320                       |                    |        |        |
|                 | Cu       | 0.323                       | -0.234                      |                    |        |        |
|                 | Fe       | 0.361                       | 0.102                       |                    |        |        |
|                 | Mn       | 0.357                       | 0.016                       |                    |        |        |
|                 | Ni       | 0.346                       | -0.096                      |                    |        |        |
|                 | Pb       | 0.324                       | -0.269                      |                    |        |        |
|                 | Zn       | 0.106                       | -0.646                      |                    |        |        |
| Total Trace     | AI       | 0.337                       | 0.310                       | 68.74%             | 19.13% | 87.97% |
| Metals in Clear | Ва       | 0.334                       | 0.115                       |                    |        |        |
| CIEEK           | Со       | 0.323                       | -0.371                      |                    |        |        |
|                 | Cr       | 0.362                       | -0.164                      |                    |        |        |
|                 | Cu       | 0.257                       | 0.206                       |                    |        |        |
|                 | Fe       | 0.338                       | 0.299                       |                    |        |        |
|                 | Mn       | 0.287                       | -0.459                      | ]                  |        |        |
|                 | Ni       | 0.352                       | 0.171                       | ]                  |        |        |
|                 | Pb       | 0.320                       | 0.239                       | ]                  |        |        |
|                 | Zn       | 0.225                       | -0.545                      |                    |        |        |

### Table S14 continued

|                |          |                             |                             | Va     | riance Explai | ned    |
|----------------|----------|-----------------------------|-----------------------------|--------|---------------|--------|
|                | Variable | PC1<br>Rotation<br>(Cos(θ)) | PC2<br>Rotation<br>(Cos(θ)) | PC1    | PC2           | Total  |
| Total Trace    | AI       | 0.313                       | 0.261                       | 74.59% | 16.47%        | 91.06% |
| Metals in Dry  | Ва       | 0.325                       | -0.338                      |        |               |        |
| CIEEK          | Со       | 0.349                       | -0.173                      |        |               |        |
|                | Cr       | 0.324                       | 0.315                       |        |               |        |
|                | Cu       | 0.354                       | -0.050                      |        |               |        |
|                | Fe       | 0.343                       | -0.268                      |        |               |        |
|                | Mn       | 0.213                       | -0.626                      |        |               |        |
|                | Ni       | 0.329                       | 0.214                       |        |               |        |
|                | Pb       | 0.310                       | 0.170                       |        |               |        |
|                | Zn       | 0.278                       | 0.384                       |        |               |        |
| Total Trace    | AI       | 0.343                       | -0.064                      | 82.14% | 10.04%        | 92.18% |
| Metals in Big  | Ва       | 0.320                       | -0.199                      |        |               |        |
| office officer | Со       | 0.305                       | 0.362                       |        |               |        |
|                | Cr       | 0.328                       | 0.170                       |        |               |        |
|                | Cu       | 0.325                       | -0.236                      |        |               |        |
|                | Fe       | 0.343                       | -0.077                      |        |               |        |
|                | Mn       | 0.331                       | -0.217                      |        |               |        |
|                | Ni       | 0.337                       | -0.003                      |        |               |        |
|                | Pb       | 0.321                       | -0.142                      |        |               |        |
|                | Zn       | 0.173                       | 0.817                       |        |               |        |

### **Table S14 continued**

|                             |          |                             |                             | Variance Explained |        |        |
|-----------------------------|----------|-----------------------------|-----------------------------|--------------------|--------|--------|
|                             | Variable | PC1<br>Rotation<br>(Cos(θ)) | PC2<br>Rotation<br>(Cos(θ)) | PC1                | PC2    | Total  |
| Total Trace                 | AI       | 0.329                       | 0.211                       | 67.34%             | 12.00% | 79.34% |
| Metals in All<br>Watersheds | Ва       | 0.348                       | -0.285                      |                    |        |        |
|                             | Со       | 0.288                       | -0.045                      |                    |        |        |
|                             | Cr       | 0.336                       | 0.260                       |                    |        |        |
|                             | Cu       | 0.356                       | -0.049                      |                    |        |        |
|                             | Fe       | 0.365                       | -0.245                      |                    |        |        |
|                             | Mn       | 0.246                       | -0.598                      |                    |        |        |
|                             | Ni       | 0.352                       | 0.115                       |                    |        |        |
|                             | Pb       | 0.329                       | 0.263                       |                    |        |        |
|                             | Zn       | 0.149                       | 0.549                       |                    |        |        |
| Particulate                 | Со       | 0.416                       | -0.587                      | 66.83%             | 17.60% | 84.43% |
| Metals in All<br>Watersheds | Cr       | 0.512                       | -0.238                      |                    |        |        |
| TTULEISHEUS                 | Ni       | 0.476                       | -0.043                      |                    |        |        |
|                             | Pb       | 0.460                       | 0.284                       |                    |        |        |
|                             | Zn       | 0.356                       | 0.719                       |                    |        |        |

### Table S14 continued

|                  |          |                             |                             | Variance Explained |        |        |
|------------------|----------|-----------------------------|-----------------------------|--------------------|--------|--------|
|                  | Variable | PC1<br>Rotation<br>(Cos(θ)) | PC2<br>Rotation<br>(Cos(θ)) | PC1                | PC2    | Total  |
| Total Metals and | AI       | -0.293                      | 0.068                       | 44.07%             | 21.14% | 65.21% |
| All Other        | Ва       | -0.328                      | -0.119                      |                    |        |        |
| All Watersheds   | Са       | -0.057                      | -0.434                      |                    |        |        |
| An Watersheas    | Со       | -0.332                      | 0.012                       |                    |        |        |
|                  | Cr       | -0.322                      | 0.085                       |                    |        |        |
|                  | Cu       | -0.343                      | 0.007                       |                    |        |        |
|                  | DOC      | -0.096                      | -0.263                      |                    |        |        |
|                  | Fe       | -0.333                      | -0.015                      |                    |        |        |
|                  | К        | 0.097                       | -0.320                      |                    |        |        |
|                  | Mg       | -0.005                      | -0.464                      |                    |        |        |
|                  | Mn       | -0.229                      | -0.092                      |                    |        |        |
|                  | Na       | 0.068                       | -0.377                      |                    |        |        |
|                  | Ni       | -0.333                      | 0.056                       |                    |        |        |
|                  | Nitrate  | -0.108                      | -0.218                      |                    |        |        |
|                  | Pb       | -0.305                      | 0.025                       |                    |        |        |
|                  | рН       | 0.117                       | -0.268                      |                    |        |        |
|                  | Sulfate  | -0.127                      | -0.344                      |                    |        |        |
|                  | Zn       | -0.202                      | 0.081                       |                    |        |        |
| Filtered Metals  | Al       | 0.206                       | 0.278                       | 32.85%             | 19.74% | 52.59% |
| and All Other    | Ва       | 0.293                       | -0.041                      |                    |        |        |
| All Watersheds   | Са       | 0.221                       | -0.418                      |                    |        |        |
|                  | Со       | 0.069                       | 0.075                       |                    |        |        |
|                  | Cr       | 0.070                       | 0.169                       |                    |        |        |
|                  | Cu       | 0.153                       | 0.296                       |                    |        |        |
|                  | DOC      | 0.334                       | -0.013                      |                    |        |        |
|                  | Fe       | 0.279                       | 0.151                       |                    |        |        |
|                  | К        | 0.385                       | -0.056                      |                    |        |        |
|                  | Mg       | 0.230                       | -0.402                      |                    |        |        |
|                  | Mn       | 0.084                       | 0.016                       |                    |        |        |
|                  | Na       | 0.147                       | -0.374                      |                    |        |        |
|                  | Ni       | 0.349                       | 0.169                       |                    |        |        |
|                  | Nitrate  | 0.313                       | 0.087                       |                    |        |        |
|                  | Pb       | 0.225                       | 0.237                       |                    |        |        |
|                  | рН       | 0.007                       | -0.356                      |                    |        |        |
|                  | Sulfate  | 0.293                       | -0.169                      |                    |        |        |
|                  | Zn       | 0.120                       | 0.222                       |                    |        |        |



**Figure S19.** Principal component analysis (PCA) of total trace metal concentrations in each watershed: a) Big Chico Creek, b) Butte Creek, c) Clear Creek, and d) Dry Creek. Each point represents a discrete sampling event, and shaded areas represent the dataset for each watershed.



**Figure S20.** Principal component analysis (PCA) of total trace metal concentrations in all watersheds (Big Chico Creek, Butte Creek, Clear Creek, and Dry Creek). Each point represents a discrete sampling event, and shaded areas confine discrete samples within each watershed.



**Figure S21**. Principal component analysis (PCA) of filter-passing trace metal concentrations, major cations, DOC, sulfate, nitrate, and pH in Big Chico Creek, Butte Creek, Clear Creek, and Cry Creek. Each point represents a discrete sampling event, and shaded areas confine discrete samples within each watershed.



**Figure S22.** Principal component analysis (PCA) of particulate concentrations for AI, Cr, Co, Fe, Ni, and Pb in Big Chico Creek, Butte Creek, Clear Creek, and Cry Creek. Each point represents a discrete sampling event, and shaded areas confine discrete samples within each watershed.

#### 2.7. Redundancy Analysis

This section presents two additional RDAs. Filter-passing elemental concentrations are analyzed in Figure S23 with the axes defined by Equations S2 and S3.

 $RDA1 = (0.6546 \times Percent Urban) + (-0.3078 \times Destroyed Structures)$  $+ (-0.7554 \times Flow) \qquad Eqn. S2$  $RDA2 = (-0.4051 \times Percent Urban) + (-0.8592 \times Destroyed Structures)$  $+ (0.0794 \times Flow) \qquad Eqn. S3$ 

Figure S24 presents an RDA for particulate elemental concentrations with axes defined by Equations S4 and S5.

 $RDA1 = (0.3471 \times \text{Urban area} (\%)) + (0.2871 \times \text{Destroyed Structures})$  Eqn. S4

 $+ (0.9859 \times TSS) + (0.5554 \times Flow)$ 

 $RDA2 = (0.332 \times Urban area (\%)) + (0.9254 \times Destroyed Structures)$  Eqn. S5

 $+ (0.06169 \times TSS) + (-0.3695 \times Flow)$ 



**Figure S23.** Redundancy analysis (RDA) of all watersheds (Big Chico Creek, Butte Creek, Clear Creek, and Dry Creek) including dependent variables of filter-passing metal concentrations, total major cation concentrations, sulfate, nitrate, and DOC, and independent variables including percent urban land use in watershed, number of burned structures per watershed, and flow as measured in Butte Creek. Each point represents a discrete sampling event, and shaded areas confine discrete samples within each watershed. RDA was plotted using the scaling I method (correlation biplot).



**Figure S24.** Redundancy analysis (RDA) of all watersheds (Big Chico Creek, Butte Creek, Clear Creek, and Dry Creek) including dependent variables of particulate metal concentrations, total major cation concentrations, sulfate, nitrate, and DOC, and independent variables including percent urban land use in watershed, number of burned structures per watershed, TSS, and flow as measured in Butte Creek. Each point represents a discrete sampling event, and shaded areas confine discrete samples within each watershed. RDA was plotted using the scaling I method (correlation biplot). RDA1 and RDA2 are defined by equations S4 and S5.

#### 2.8. Butte Creek Hydrographs



# 3. References

CAL Fire, 2020, Camp Fire Structure Status Map, <u>https://frap.fire.ca.gov/mapping/gis-data</u>, (accessed 29 November 2022).

California Department of Conservation, 2022a, Division of Land Resource Protection, Farmland Mapping and Monitoring Program. Butte County Important Farmland, Downloadable Data. 1988-2020. <u>https://maps.conservation.ca.gov/dlrp/metadata/importantfarmland/butte\_meta.htm</u>, (accessed 29 November 2022).

California Department of Conservation, 2022b, Mines Online (MOL), CA.gov. <u>https://maps.conservation.ca.gov/mol/index.html</u>, (accessed 29 November 2022).

Roth, D.A., Johnson, M.O., McCleskey, R.B., Riskin, M.L., and Bliznik, P.A., 2022, Evaluation of preservation techniques for trace metals and major cations for surface waters collected from the U.S. Geological Survey's National Water Quality Network Sites: U.S. Geological Survey data release, <u>https://doi.org/10.5066/P9SMPZ3M</u>.

U.S. EPA, 2002, Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. EPA-821-R-02-019. U.S. Environmental Protection Agency, Office of Water.

U.S. EPA, 2014, Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry," Revision 2. Washington, DC.

U.S. EPA, 2022, National Recommended Water Quality Criteria, <u>https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table</u>, (accessed November 2022).

U.S. Geological Survey, 2016, National Water Information System, USGS Water Data for the Nation, <u>http://dx.doi.org/10.5066/F7P55KJN</u>, https://waterdata.usgs.gov/monitoring-location/11390000/, (accessed November 2023).