Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2023

Supplementary Material Cover Sheet

Mobility of antipyretic drugs with different molecular structures in saturated soil porous media

Jiuyan Chen^{1,2}, Qiang Zhang³, Weifeng Chen¹, Usman Farooq², Taotao Lu⁴,

Bin Wang², Jinzhi Ni¹, Huiying Zhang^{1,*}, Zhichong Qi^{2,**}

¹ Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian normal university, Fuzhou, Fujian 350007, China ² Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China

³ Ecology institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

⁴ College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China

Manuscript prepared for *Environmental Science: Processes & Impacts* *Corresponding author: Huiying Zhang (ying_zz1995@163.com); **Corresponding author: Zhichong Qi (gizhichong1984@163.com).

> Number of pages: 11 Number of tables: 2 Number of figures: 5

S1. Particle size distribution (PSD) of soil

In this work, soil grain particle size distribution (PSD) was measured by the sieve-pipette method (SPM). The SPM is based on Stokes' Law. ¹ The soil was dispersed using an ultrasonic vibrator (ca. 20 g soil and ca. 60 mL water in a beaker; sonicated for 2 min). The sand fraction was collected by passing the soil-water suspension through a 53- μ m sieve. A 50 mL sample of suspension (< 53 μ m) was collected to measure silt plus clay. The suspension was allowed to settle for 8 h in a temperature-controlled room (20 °C), and a sample was collected with a 50-mL pipette from a depth of 10 cm to determine clay. ¹ Clay (< 2 μ m), silt (2–53 μ m), and sand (53–2 000 μ m) contents were calculated as the percentage (%) of recovered sample mass based on the USDA soil texture classification system.

S2. Determination of the CEC of soil

The soil's cation exchange capacity (CEC) was measured by following the previously reported method. ² In brief, 500 mL of CaCl₂ (1eq/L) are injected through a column filled with 10 g of soil from bottom to top. Then, 150 mL of CaCl₂ (0.05 eq/L) is injected, followed by 500 mL of KNO₃ (1eq/L). The percolate was collected in a 500 mL flask, and the total calcium was titrated with EDTA (0.02eq/L) at pH 12 using the Eriochrome Black T as an indicator. At the same time, the chloride is titrated with AgNO₃ (0.05eq/L) using the K₂CrO₄ as an indicator. The CEC is given by:

CEC (meq /100g) = 2v-5V

Where v is the volume (mL) of EDTA required for calcium titration and V is the volume (mL) of AgNO₃ required for chloride titration.

No.	electrolyte solution	рН	ζ-potential of soil (mV)
1	10 mM NaCl	5.0	-20.1 ± 1.2
2	10 mM NaCl	7.0	-25.9 ± 0.7
3	10 mM NaCl	9.0	-31.6 ± 2.1
4	0.5 mM CaCl ₂	5.0	-21.7 ± 0.5

Table S1. ζ -potential of soil under different solution chemistry conditions

Column	Column Antipyretic drugs ^{<i>a</i>}	electrolyte solution	pH -	Parameters of two-site nonequilibrium transport model						
No.				R (-)	β(-)	ω(-)	<i>f</i> (-)	α (1/d)	$K_{\rm d}$ (L/kg)	r^2
1	IMC	10 mM NaCl	7.0	5.13 ± 0.12	0.312 ± 0.009	0.477 ± 0.003	0.145 ± 0.007	2.51 ± 0.03	1.69 ± 0.07	0.993
2	IBF	10 mM NaCl	7.0	3.76 ± 0.15	0.387 ± 0.013	0.332 ± 0.027	0.164 ± 0.012	2.27 ± 0.07	1.15 ± 0.02	0.986
3	APAP	10 mM NaCl	7.0	3.39 ± 0.08	0.421 ± 0.015	0.263 ± 0.032	0.178 ± 0.010	2.10 ± 0.05	0.97 ± 0.05	0.999
4	IMC	0.5 mM CaCl ₂	5.0	6.53 ± 0.17	0.269 ± 0.007	0.495 ± 0.035	0.136 ± 0.017	2.70 ± 0.06	2.26 ± 0.13	0.977
5	IBF	0.5 mM CaCl ₂	5.0	4.56 ± 0.09	0.337 ± 0.011	0.427 ± 0.021	0.151 ± 0.010	2.31 ± 0.11	1.44 ± 0.11	0.992
6	APAP	0.5 mM CaCl ₂	5.0	3.68 ± 0.05	0.401 ± 0.014	0.395 ± 0.023	0.175 ± 0.013	2.19 ± 0.09	1.09 ± 0.15	0.993
7	IMC	10 mM NaCl	5.0	5.55 ± 0.11	0.295 ± 0.006	0.481 ± 0.017	0.135 ± 0.008	2.62 ± 0.09	1.82 ± 0.13	0.987
8	IBF	10 mM NaCl	5.0	3.87 ± 0.07	0.362 ± 0.013	0.411 ± 0.021	0.139 ± 0.012	2.43 ± 0.15	1.34 ± 0.07	0.998
9	APAP	10 mM NaCl	5.0	3.56 ± 0.09	0.392 ± 0.015	0.359 ± 0.017	0.155 ± 0.017	2.21 ± 0.13	1.06 ± 0.05	0.999
10	IMC	10 mM NaCl	9.0	4.37 ± 0.08	0.351 ± 0.012	0.452 ± 0.013	0.158 ± 0.012	2.32 ± 0.07	1.38 ± 0.10	0.993
11	IBF	10 mM NaCl	9.0	3.11 ± 0.02	0.447 ± 0.017	0.278 ± 0.015	0.185 ± 0.017	2.26 ± 0.16	0.83 ± 0.02	0.995
12	APAP	10 mM NaCl	9.0	2.69 ± 0.07	0.495 ± 0.003	0.172 ± 0.003	0.198 ± 0.019	1.95 ± 0.12	0.71 ± 0.01	0.996

Table S2. Fitted parameters of two-site nonequilibrium transport model from breakthrough results of column experiments.

^a IMC, IBF, and APAP represent indometacin, ibuprofen, and acetaminophen, respectively.

Fig. S1. The representative breakthrough curve of conservative tracer (Br). The line was plotted by fitting the breakthrough data with the one-dimensional steady-state advection–dispersion equation.

Fig. S2. pH-dependent speciation of the whole organic acid molecular and the functional groups, respectively: (a) IMC; (b) IBF; and (c) APAP.

Fig. S3. Transport of SNM in saturated soil columns in the presence of 1.5 mM Na^+ and 0.5 mM Ca^{2+} at pH 5.0: (a) IMC; (b) IBF; and (c) APAP.

Fig. S4. Fitted parameters of two-site nonequilibrium transport model from breakthrough results of column experiments (in the presence of 0.5 mM Ca²⁺, pH 5.0): (a) Retardation factor (*R*); (b) the fraction of Type 1 sites (*f*); (c) the fraction of instantaneous retardation to the total retardation (β); and (d) the coefficient of partitioning between the equilibrium and nonequilibrium phases (ω); (e) the first-order rate for kinetics at Type 2 sites (α); (f) K_d values.

Fig. S5. Transport of antipyretic drugs in saturated soil columns at different pH conditions: (a) pH 5.0, (columns 7–9, Table 2); (b) pH 9.0 (columns 10–12, Table 2).

References:

- [1] G. W. Gee, D. Or, *Particle size analysis*. In Dane J, Topp C (eds.) Methods of Soil Analysis, *Soil Sci. Soc. Am. Madison.*, 2002, pp. 255–293.
- [2] M. Abdelwaheb, K. Jebali, H. Dhaouadi, S. Dridi-Dhaouadi, Adsorption of nitrate, phosphate, nickel and lead on soils: risk of groundwater contamination. *Ecotox. Environ. Safe.* 2019, **179**, 182–187.