

Supplementary Information

Limited effects of different real groundwaters from three coastal cities in China on the transport of low-concentration nanoplastics in quartz sand

Yanan Liu^a, Genyao Gu^a, Guoqing Li^a, Hyunjung Kim^b, Li Cai^{a, *}, Huiwen Cai^{c, *}

^a College of Environmental Science and Engineering, Donghua University, Shanghai 201620, P. R. China

^b Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

^c Takuviik, CNRS/Université Laval, IRL3376, 1045 avenue de la, Médecine Quebec QC, G1V0A6, Canada

*Corresponding author. E-mail: caili@dhu.edu.cn (Cai L.,); E-mail: huiwen.cai93@gmail.com (Cai H. W.,).

Number of Pages: 11

Number of Tables: 2

Number of Figures: 3

1 **Text S1. NPs concentration determination**

2 The concentration of both PS and PLGA NPs were analyzed using a fluorescence
3 spectrophotometer (F7000, Hitachi, Japan) with 10 mm × 10 mm quartz cuvette. The
4 optimum excitation/emission wavelengths to detect the PS NPs (both 0.51 and 1.1 μ m)
5 and PLGA NPs were determined to be 468/508 nm and 460/500 nm, respectively, and
6 the excitation and emission slits of the instrument were both set at 5 nm. The calibration
7 results confirmed a linear correlation between the NPs concentration and the intensity
8 of the fluorescence signals over the range of the investigated NPs concentrations (Fig.
9 S2). To testify the influence of real groundwaters on the detection of NP using
10 fluorescence spectrophotometer, NPs suspension diluted with both DI water and real
11 groundwater samples (ZJ site) at the same concentration were prepared. Then, the
12 concentrations of samples were determined by fluorescence spectrophotometer, and the
13 results were presented in Fig. S3. It was observed that the detected concentration of
14 NPs were equal in DI waters and groundwater, indicating the negligible influence of
15 real groundwaters on the detection of NPs using fluorescence spectrophotometer.

16

17 **Text S2. Column experiments protocol**

18 Ultrapure quartz sand (Minghai Quartz Sand Factory, Zhengzhou, China) with
19 sizes ranging from 417 to 600 μ m was as porous media for the NPs transport
20 experiments. The quartz sand was cleaned by soaking in concentrated HCl for at least
21 24 hours, and then in 1 M NaOH solution for another 24 hours. After acid-washing and

22 alkali-washing, the quartz sand was washed with DI water repeatedly to bring the pH
23 to neutral. Then the quartz sand was dried at 105 °C overnight, and then baking
24 overnight at 850 °C for at least 8 h.

25 Prior to packing, the cleaned quartz sand was rehydrated by boiling in DI water
26 for at least 0.5 h. After the rehydrated quartz sand was cooled, the columns were packed
27 by adding wet quartz sand in small increments (~ 1 cm) with mild vibration of the
28 column to minimize any layering or air entrapment. One 80 mesh fabric screen was
29 placed at each end of the column.

30

31 **Text S3. Calculation of interaction energies between NPs-NPs and NPs-sand**

32 The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to calculate
33 the interaction energies (V_{TOT}), a sum of van der Waals (V_{VDW}) and electrostatic double
34 layer (V_{EDL}) interactions, between NPs and NPs (sphere to sphere).

35
$$V_{TOT} = V_{VDW} + V_{EDL}$$

36 The van der Waals interaction is calculated by ¹

37
$$V_{VDW} = - \frac{Aa}{12h}$$

38 where A is the Hamaker constant for NPs (1.0×10^{-20} J for PS ^{2,3} and 6.0×10^{-21} J for
39 PLGA ⁴), a is the radius of NPs (m), and h is the separation distance between NPs and
40 NPs (m).

41 The electronics double layer interaction is calculated by

42
$$V_{EDL} = 32\pi a \left(\frac{k_B T}{ze} \right)^2 \gamma^2 e^{-\kappa h}$$

43 where k_B is Boltzmann constant (1.38×10^{-23} J/K), T is the Kevin temperature (298 K),

44 z is the indifferent ion valence (treated as 1 in this study), e is the elementary charge

45 (1.6×10^{-19} C), and κ is the Debye length (m^{-1}), defined as

$$46 \quad k = \sqrt{\frac{2N_A e^2 I}{\varepsilon_r \varepsilon_0 k_B T}}$$

47 and γ is a dimensionless function of the surface potential, defined as

$$48 \quad \gamma = \tanh\left(\frac{ze\varphi}{4k_B T}\right)$$

49 where N_A is Avogadro's number (6.02×10^{23} mol $^{-1}$), I is the ionic strength of the real

50 groundwaters (converted from the conductivities of the real groundwaters, 12.88

51 mS/cm treated as 0.1 mM IS), ε_0 is the permittivity in vacuum (8.85×10^{-12} C $^2/\text{J m}$), ε_r

52 is the relative dielectric permittivity of water (78.4), and φ is the surface charge,

53 approximated by the zeta-potentials of NPs.

54 We used the extended DLVO (XDLVO) theory to calculate the interaction

55 energies (V_{TOT}) between NPs and sand (sphere to plate). It includes V_{VDW} , V_{EDL} , and

56 Lewis acid-base (V_{AB}) interaction. The van der Waals interaction is calculated by

$$57 \quad V'_{\text{VDW}} = -\frac{Ar}{6h \left(1 + \frac{14h}{\lambda}\right)}$$

58 where h is the separation distance between NPs and sand, and λ is the characteristic

59 wavelength (42.5 nm)⁵.

60 The electrostatic double layer interaction is calculated by

$$61 \quad V_{\text{EDL}} = \pi r \varepsilon_0 \varepsilon_r \left\{ 2\phi_1 \phi_2 \ln \left[\frac{1 + \exp(-kh)}{1 - \exp(-kh)} \right] + (\phi_1^2 + \phi_2^2) \ln [1 - \exp(-2kh)] \right\}$$

62 where ϕ_1 and ϕ_2 are the surface potentials of NPs and sand, respectively.

63 The Lewis acid-base (V_{AB}) interaction energy is calculated by

64
$$V_{AB} = 2\pi r \lambda_w \Delta G_{h_0}^{AB} \exp \left(\frac{h_0 - h}{\lambda_w} \right)$$

65 where λ_w is the characteristic decay length (0.6 nm) of acid-base interactions in water

66 ⁶, h_0 is the minimum equilibrium distance (0.157 nm) between NPs and sand surface ⁶,

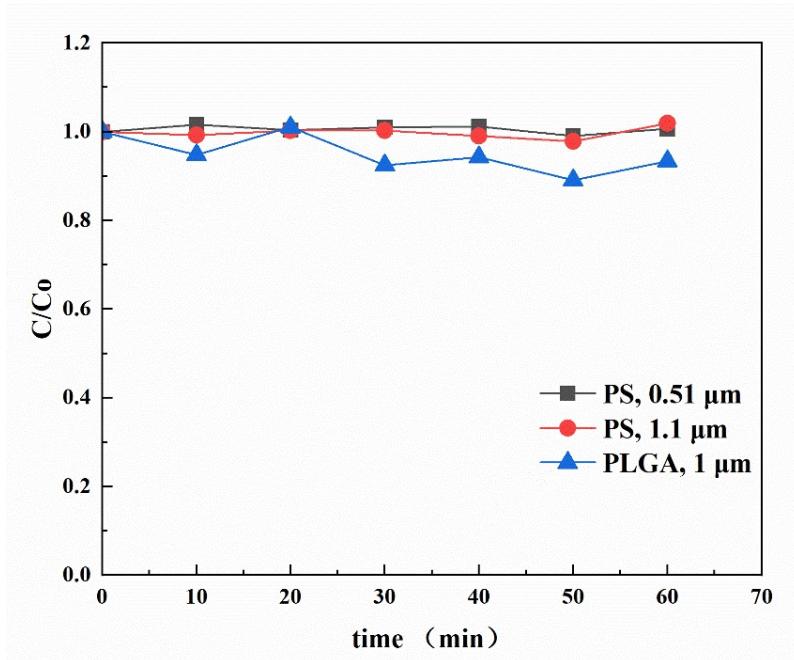
67 and $\Delta G_{h_0}^{AB}$ can be calculated as:

68
$$\Delta G_{h_0}^{AB} = 2 \left[\sqrt{\gamma_w^+} \left(\sqrt{\gamma_m^-} + \sqrt{\gamma_s^-} - \sqrt{\gamma_w^-} \right) + \sqrt{\gamma_w^-} \left(\sqrt{\gamma_m^+} + \sqrt{\gamma_s^+} - \sqrt{\gamma_w^+} \right) - \sqrt{\gamma_m^- \gamma_s^+} - \sqrt{\gamma_m^+ \gamma_s^-} \right]$$

69 where the subscripts m , w and s represent NPs, water and sand, respectively, electron

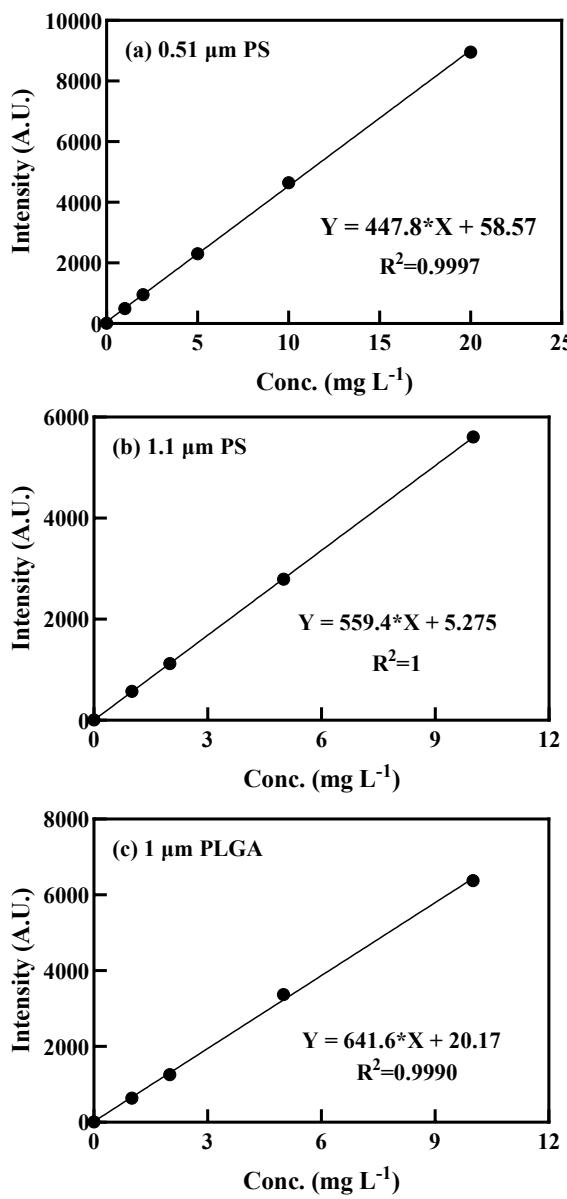
70 γ^+ (γ^-) is the electronics accepting (donating) interfacial tension ($\gamma_w^+ = \gamma_w^- = 25.5$

71 mJ/m^2 , $\gamma_s^+ = 1.4 \text{ mJ/m}^2$, $\gamma_s^- = 47.8 \text{ mJ/m}^2$, $\gamma_m^+ = 0.02 \text{ mJ/m}^2$, and $\gamma_m^- = 7.6 \text{ mJ/m}^2$) ⁷,

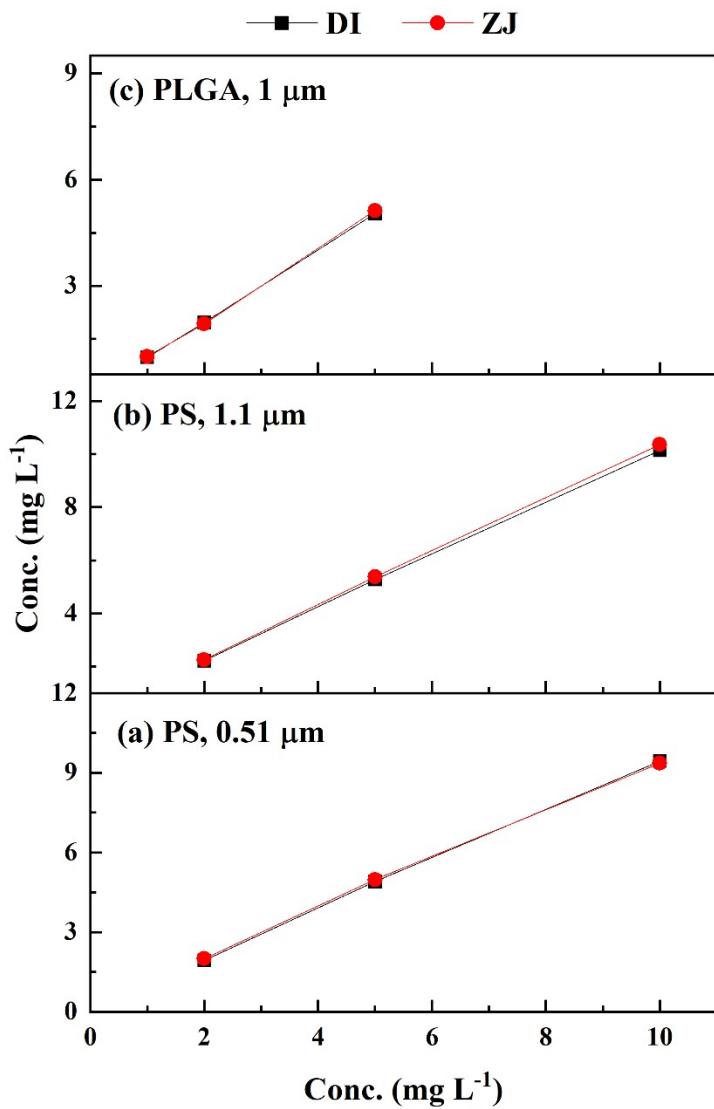

72 ⁸.

73 **Table S1.** Breakthrough mass recovery of column experiments.

NPs	Site	Breakthrough mass recovery (%)
PS, 0.51 μm	FJ	91.21 \pm 1.08
	ZJ	91.67 \pm 3.71
	JS	80.07 \pm 1.60
PS, 1.1 μm	FJ	87.66 \pm 1.61
	ZJ	88.60 \pm 1.69
	JS	90.30 \pm 0.96
PLGA, 1 μm	FJ	22.62 \pm 0.52
	ZJ	27.80 \pm 3.26
	JS	31.15 \pm 0.20


75 **Table S2.** Zeta potentials of NPs and quartz sand, and average sizes of NPs with
 76 different real groundwaters.

NPs and sand	Site	Zeta potential (mV)	Average size (nm)
PS, 0.51 μm	FJ	-41.32 \pm 2.35	771.40 \pm 39.99
	ZJ	-16.88 \pm 1.95	635.85 \pm 3.18
	JS	-19.93 \pm 0.92	670.87 \pm 14.21
PS, 1.1 μm	FJ	-34.27 \pm 0.58	3220.32 \pm 96.28
	ZJ	-13.96 \pm 0.27	1119.26 \pm 13.34
	JS	-15.5 \pm 0.59	1205.91 \pm 73.16
PLGA, 1 μm	FJ	-8.06 \pm 1.65	18168.64 \pm 1072.73
	ZJ	-11.03 \pm 1.96	24716.84 \pm 3042.68
	JS	-5.31 \pm 2.20	24819.29 \pm 4189.81
Quartz sand	FJ	-25.52 \pm 0.37	NA
	ZJ	-13.69 \pm 1.95	
	JS	-17.51 \pm 0.43	


78

79 **Fig. S1.** The stability of both PS and PLGA NPs in DI water.

80

81 **Fig. S2.** Calibration curves of PS and PLGA NPs with fluorescence spectrophotometer.

82

83 **Fig. S3.** Influence of groundwater on the detection of NPs using fluorescence

84 spectrophotometer.

86 **References**

87 1. M. Elimelech, J. Gregory, X. Jia and R. A. F. Williams, *Particle Deposition and*
88 *Aggregation*, 1995.

89 2. K. Gotoh, R. Kohsaka, K. Abe and M. Tagawa, Estimation of the Hamaker
90 constant from flocculation in the secondary minimum and its experimental
91 verification in particle adhesion, *J. Adhes. Sci. Technol.*, 1996, 10, 1359-1370.

92 3. M. B. Seymour, G. Chen, C. Su and Y. Li, Transport and retention of colloids in
93 porous media: Does shape really matter?, *Environ. Sci. Technol.*, 2013, 47, 8391-
94 8398.

95 4. J. Fei, H. Xie, Y. Zhao, X. Zhou, H. Sun, N. Wang, J. Wang and X. Yin, Transport
96 of degradable/nondegradable and aged microplastics in porous media: Effects of
97 physicochemical factors, *Sci. Total Environ.*, 2022, 851, 158099.

98 5. L. Suresh and J. Y. Walz, Effect of Surface Roughness on the interaction energy
99 between a colloidal sphere and a flat plate, *J. Colloid. Interf. Sci.*, 1996, 183, 199-
100 213.

101 6. T. Xia, J. D. Fortner, D. Zhu, Z. Qi and W. Chen, Transport of sulfide-reduced
102 graphene oxide in saturated quartz sand: Cation-dependent retention mechanisms,
103 *Environ. Sci. Technol.*, 2015, 49, 11468-11475.

104 7. A. M. Gallardo-Moreno, M. L. Gonzalez-Martin, C. Perez-Giraldo, E. Garduno, J.
105 M. Bruque and A. C. Gomez-Garcia, Thermodynamic analysis of growth
106 temperature dependence in the adhesion of *Candida parapsilosis* to polystyrene,
107 *Appl. Environ. Microb.*, 2002, 68, 2610-2613.

108 8. Y. Sun, B. Gao, S. A. Bradford, L. Wu, H. Chen, X. Shi and J. Wu, Transport,
109 retention, and size perturbation of graphene oxide in saturated porous media:
110 effects of input concentration and grain size, *Water Res.*, 2015, 68, 24-33.