Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2023

SUPPLEMENTARY INFORMATION

How do certain atmospheric aerosols affect Cu-binding organic ligands in the oligotrophic coastal sea surface microlayer?

Slađana Strmečkia*, Iva Dešpojab, Abra Penezića, Andrea Milinkovića, Saranda Bakija

Alempijevića, Gyula Kissc, András Hofferd, Božena Mitiće, Dario Hruševare, Sanja Frkaa

^aRuđer Bošković Institute, Division for Marine and Environmental Research, Bijenička 54, 10 000 Zagreb, Croatia

^bUniversity of Split, Faculty of Chemistry and Technology, Ruđera Boškovića 35, 21000 Split, Croatia

^cRenewable Energy Research Group, University of Pannonia Nagykanizsa - University Center for Circular Economy, Nagykanizsa, 8800, Hungary

^dELKH-PE Air Chemistry Research Group, Veszprém, 8200, Hungary

^eUniversity of Zagreb, Faculty of Science, Department of Biology, Marulićev trg 9a, 10 000 Zagreb, Croatia

*Corresponding author: Tel.: +385 1 4680 127, fax: +385 1 4680 242. E-mail address: strmecki@irb.hr (S. Strmečki)

Fig. S1. Saharan dust intrusion: A) NOAA HYSPLIT air-mass backward trajectories ending up at the sampling site in Šibenik area 5 m a.g.l. in April 2019, and B) satellite images of air mass transport from the Sahara for the date 24.06.2021. EUMETCiew (https://view.eumetsat.int/productviewer?v=default).

Fig. S2. The sea surface microlayer sampler (designed by dr. D. Omanović, Ruđer Bošković Institute, Zagreb, Croatia)

Fig. S3. A) DPASV voltammograms of Cu in the SML sample (April 16th, 2019 with added 400 nM Cu²⁺) and ULW sample (April 1st, 2019 with added 320 nM Cu²⁺), recorded with (full line) and without (dashed line) desorption step at $E_d = -1.4$ V for 1 s, $E_a = -0.6$ V, $t_a = 120$ s, [T-X-100] = 1 mg/L. B) Dependence of Cu peak height on T-X-100 concentration. Inset: Cu voltammograms in DPASV for the SML sample without (dotted line) and with addition (full line) of 1 mg/L T-X-100, [Cu²⁺] = 160 nM, $E_a = -0.6$ V, $t_a = 120$ s, $E_d = -1.4$ V for 1 s. C) Pseudopolarograms of Cu in UV-irradiated seawater, in SML and ULW April samples, [T-X-100] = 1 mg/L, [Cu²⁺] = 560 nM, $t_a = 60$ s, $E_d = -1.4$ V.

Fig. S4. Chronopotentiograms for Jadrija SML sample (April 16th, 2019) with addition of 0.2-0.7 μ g/L BSA. E_a –0.6 V, t_a 120 s, I_{str} = –4 μ A, maximal time of measurement 3 s.

Fig. S5. Titration curve for 1 mg/L BSA model solution, [T-X-100] = 1 mg/L, nitrogen purging time 300 s, $E_a = -0.6$ V, $t_a = 120$ s, $E_d = -1.4$ V.

Fig. S6. The amount of weed, grass and tree airborne pollen in the total pollen determined in March and April 2019 in Šibenik area (middle Adriatic eastern coastal area) and *Pinus* pollen contribution in total pollen concentration in April 2019.