Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2024

Table S1: Geo-accumulation indices (relative to the upper continental crust's elemental compositions: Rudnick and Gao⁵⁴) and the associated classification for the determining elements in the analyzed sediment samples (Punarbhaba river, Bangladesh).

Sample ID	Sc	Ti	V	Fe	La	Ce	Sm	Eu	Yb	Lu	Hf	Та	Th	U
	[µg/g]	[%]	[µg/g]	[%]	[µg/g]									
This work														
P-1.1	-0.79	-0.37	-1.28	-0.72	0.23	1.58	0.29	-0.18	-0.09	0.16	0.057	0.25	0.84	0.78
P-1.2	-1.28	-1.25	-1.57	-1.12	1.36	0.58	0.84	0.03	-0.13	0.13	-0.31	-0.85	1.52	0.42
P-1.3	-1.78	-0.31	-2.23	-1.45	-1.03	-0.75	-1.37	1.09	-0.64	-0.68	0.53	-0.89	-0.81	-1.47
P-2.1	-0.52	-0.66	-0.81	-0.43	0.28	0.07	0.19	-0.36	-0.96	0.61	-0.22	0.32	0.66	0.83
P-2.2	-0.27	0.03	-0.48	-0.24	0.29	-0.02	0.04	-0.17	0.34	0.46	-0.41	0.29	0.65	0.98
P-2.3	-0.27	-0.22	-0.62	-0.19	0.30	0.01	0.06	0.55	0.25	0.71	-0.32	0.19	0.59	1.05
P-3.1	-2.46	-0.66	-2.48	-2.16	-0.38	-0.68	-0.81	0.63	-0.56	-0.08	-1.78	-2.22	-0.54	-0.72
P-3.2	-2.18	-1.13	-2.66	-2.13	-0.64	-0.89	-0.85	0.79	-0.44	-0.15	-1.79	-1.32	-0.49	-0.36
P-3.3	-1.85	-0.34	-1.94	-1.83	-1.08	-1.01	-1.44	-0.37	-1.02	-0.73	-0.93	-1.05	-0.91	-1.12
P-4.1	-2.09	-0.13	-2.79	-2.03	-1.11	-0.86	-1.55	0.60	-1.27	-0.29	-1.95	-2.03	-0.86	-1.31
P-4.2	-1.99	-0.25	-2.79	-1.87	-1.11	-0.89	-1.33	-0.72	-0.79	-0.78	-1.89	-0.81	-1.39	-1.03
P-4.3	-2.06	-1.03	-2.43	-1.89	-1.45	-1.04	-1.75	0.93	-1.04	-0.54	-1.59	-1.22	-1.61	-1.39
P-5.1	-0.81	-1.25	-1.16	-0.68	-0.05	0.39	0.02	-0.22	-0.47	0.27	-0.06	-0.09	-2.76	0.23
P-5.2	-0.85	-0.75	-1.35	-0.58	0.06	0.65	0.10	1.06	0.34	0.53	0.33	-0.21	0.66	0.59
P-5.3	-0.61	-0.97	-0.99	-0.53	-0.15	0.21	0.07	-0.31	0.11	0.48	-0.22	0.07	0.42	0.42
P-6.1	-2.02	-0.88	-3.01	-1.83	-1.91	-1.10	-1.76	0.53	-1	-0.73	-1.45	0.27	-1.11	-1.31
P-6.2	-1.99	-1.66	-2.86	-1.79	-1.78	-0.98	-1.97	0.79	-0.50	-0.54	-1.45	1.53	-1.56	-2.47
P-6.3	-1.67	-1.75	-2.38	-1.44	-2.04	-1.17	-1.95	-0.31	-0.04	-0.11	-0.06	-0.99	-1.34	-1.35
P-7.1	-1.99	-0.51	-2.18	-1.79	-1.16	-0.37	-1.16	-0.18	-1.14	-0.84	-1.31	1.37	-0.89	-0.58
P-7.2	-2.13	-1.66	-2.94	-2.16	-1.17	-0.37	-1.48	-0.64	-1	-0.78	-1.89	0.77	-0.70	0.11
P-7.3	-1.95	-1.44	-2.59	-2.04	-1.88	-1.07	-1.67	0.64	-0.75	-0.49	-1.55	-1.95	-1.41	-1.28
P-8.1	-1.04	-1.51	-1.54	-1.03	0.85	0.15	-0.07	-0.15	0.29	0.42	0.77	-0.19	1.37	0.89
P-8.2	-1.09	-1.37	-1.46	-1.06	0.38	-0.37	0.35	0.09	-0.39	0.13	0.03	-0.21	1.02	0.13
P-8.3	-1.02	-0.66	-1.21	-1.02	-0.05	-0.75	0.10	-0.29	-0.04	0.05	0.10	-0.91	0.71	0.71
P-9.1	-4.15	-1.51	-2.38	-1.41	-3.50	-1.39	-0.16	-0.36	-0.11	0.16	0.19	-0.75	-3.25	0.55
P-9.2	-2.02	-0.83	-2.38	-1.87	-1.35	-0.41	-2.25	-0.15	-0.57	-0.58	-1.62	-0.31	-1.97	-1.31
P-9.3	-2.23	-1.37	-2.33	-1.62	-1.02	0.25	-0.99	0.16	-1.51	-1.29	-1.43	-0.24	-0.74	-1.15
P-10.1	-1.80	-0.62	-2.38	-1.56	-1.07	-0.04	-0.89	0.39	-0.38	-0.18	-1.13	-1.40	-0.76	-1.08
P-10.2	-2.12	-0.79	-1.38	-1.29	-0.96	0.08	-0.74	-0.79	-0.24	0.13	-1.19	-0.51	-0.29	-0.05
P-10.3	-1.98	-1.25	-2.94	-1.89	-2.22	-0.37	-2.21	-0.93	-1.12	-0.63	-1.59	-0.39	-1.89	0.20
Mean (n=30)	-1.63	-0.90	-1.99	-1.39	-0.78	-0.35	-0.81	0.07	-0.49	-0.17	-0.81	-0.45	-0.56	-0.34
Min.	-4.15	-1.75	-3.01	-2.16	-3.50	-1.39	-2.25	-0.93	-1.51	-1.29	-1.95	-2.22	-3.25	-2.47
Max.	-0.27	0.03	-0.48	-0.19	1.36	1.58	0.84	1.08	0.34	0.71	0.77	1.53	1.52	1.05

I _{geo} value	Class	Quality of sediment
$I_{geo} \leq 0$	0	Practically unpolluted
$0 < I_{geo} < 1$	1	Unpolluted to moderately polluted
$1 < I_{geo} < 2$	2	Moderately polluted
$2 < I_{geo} < 3$	3	Moderately to heavily polluted
$3 < I_{geo} < 4$	4	Heavily polluted
$4 < I_{geo} < 5$	5	Heavily to extremely polluted
$I_{\text{geo}} > 5$	6	Extremely polluted

Table S2: Enrichment factor (relative to the upper continental crust's elemental compositions: Rudnick and Gao⁵⁴) and the associated classification for the determined elements in the analyzed sediment samples (Punarbhaba river, Bangladesh).

Samala ID	Sc	Ti	V	Fe	La	Ce	Sm	Eu	Yb	Lu	Hf	Та	Th	U
Sample ID	[µg/g]	[%]	[µg/g]	[%]	[µg/g]									
This work														
P-1.1	0.951	1.27	0.68	1	1.93	4.92	2.01	1.45	1.54	1.84	1.70	1.95	2.95	2.83
P-1.2	0.89	0.91	0.73	1	5.56	3.24	3.87	2.21	1.99	2.38	1.75	1.21	6.21	2.89
P-1.3	0.79	2.21	0.58	1	1.34	1.62	1.06	5.82	1.75	1.71	3.96	1.48	1.56	0.99

P-2.1	0.94	0.85	0.77	1	1.64	1.41	1.54	1.05	0.69	2.06	1.16	1.68	2.13	2.39
P-2.2	0.98	1.20	0.85	1	1.44	1.16	1.22	1.05	1.49	1.63	0.89	1.45	1.86	2.33
P-2.3	0.95	0.98	0.75	1	1.41	1.15	1.19	1.67	1.35	1.87	0.91	1.31	1.73	2.36
P-3.1	0.81	2.81	0.80	1	3.42	2.78	2.54	6.89	3.01	4.23	1.29	0.96	3.05	2.71
P-3.2	0.97	2.00	0.69	1	2.81	2.37	2.44	7.64	3.23	3.96	1.26	1.76	3.12	3.42
P-3.3	0.99	2.81	0.93	1	1.69	1.77	1.31	2.76	1.76	2.15	1.87	1.72	1.89	1.64
P-4.1	0.95	3.73	0.59	1	1.89	2.25	1.39	6.21	1.69	3.34	1.058	0.99	2.25	1.64
P-4.2	0.91	3.08	0.53	1	1.69	1.97	1.46	2.22	2.11	2.12	0.99	2.08	1.38	1.79
P-4.3	0.89	1.83	0.69	1	1.36	1.81	1.11	7.09	1.81	2.56	1.23	1.59	1.22	1.42
P-5.1	0.91	0.67	0.72	1	1.55	2.10	1.62	1.38	1.16	1.93	1.54	1.51	0.24	1.88
P-5.2	0.83	0.89	0.59	1	1.56	2.34	1.61	3.11	1.89	2.16	1.88	1.29	2.36	2.26
P-5.3	0.95	0.74	0.72	1	1.31	1.67	1.52	1.17	1.56	2.02	1.24	1.52	1.94	1.93
P-6.1	0.88	1.94	0.44	1	0.95	1.66	1.05	5.13	1.78	2.15	1.30	4.30	1.65	1.43
P-6.2	0.87	1.099	0.48	1	1.01	1.77	0.89	6.01	2.46	2.39	1.27	10.03	1.18	0.63
P-6.3	0.86	0.81	0.52	1	0.66	1.21	0.70	2.20	2.64	2.52	2.62	1.37	1.08	1.07
P-7.1	0.88	2.44	0.77	1	1.56	2.69	1.56	3.06	1.58	1.95	1.40	9.02	1.87	2.32
P-7.2	1.028	1.41	0.58	1	1.97	3.44	1.59	2.85	2.23	2.59	1.20	7.59	2.74	4.82
P-7.3	1.07	1.51	0.68	1	1.11	1.96	1.29	6.39	2.45	2.92	1.40	1.07	1.54	1.69
P-8.1	0.10	0.72	0.70	1	3.69	2.28	1.95	1.84	2.51	2.73	3.49	1.79	5.31	3.81
P-8.2	0.98	0.80	0.76	1	2.71	1.61	2.65	2.22	1.59	2.29	2.13	1.81	4.22	2.28
P-8.3	0.10	1.28	0.88	1	1.96	1.20	2.18	1.65	1.97	2.09	2.18	1.08	3.31	3.32
P-9.1	0.15	0.93	0.51	1	0.23	1.01	2.36	2.07	2.45	2.96	3.04	1.57	0.28	3.88
P-9.2	0.91	2.08	0.71	1	1.45	2.78	0.78	3.33	2.49	2.47	1.20	2.99	0.94	1.48
P-9.3	0.66	1.19	0.61	1	1.52	3.65	1.55	3.45	1.08	1.26	1.15	2.59	1.85	1.39
P-10.1	0.84	1.91	0.57	1	1.39	2.86	1.58	3.86	2.26	2.59	1.34	1.11	1.74	1.39
P-10.2	0.56	1.41	0.94	1	1.25	2.58	1.46	1.42	2.07	2.68	1.07	1.72	1.99	2.36
P-10.3	0.94	1.56	0.48	1	0.79	2.86	0.79	1.95	1.70	2.39	1.22	2.82	0.99	4.26
Mean(n=30)	0.88	1.57	0.67	1	1.76	2.20	1.61	3.30	1.94	2.39	1.63	2.45	2.15	2.29
Min.	0.15	0.67	0.44	1	0.23	1.01	0.70	1.05	0.69	1.26	0.89	0.96	0.24	0.63
Max.	1.07	3.73	0.94	1	5.56	4.92	3.87	7.64	3.23	4.22	3.96	10.03	6.21	4.82

EF value	Remarks
EF < 1	no enrichment
EF < 3	minor enrichment
EF 3 - 5	moderate enrichment
EF 5 - 10	moderately severe enrichment
EF 10 - 25	severe enrichment
EF 25 - 50	very severe enrichment
EF > 50	extremely severe enrichment

Table S3: Calculated results of element-specific contamination fa	actor (CF).
---	-------------

	5.	т	V	Ea	I I a	Ca	C.m.	En	Vh		IIf	Та	Th	II
Sample ID	50	11	v	ге	La	Ce	SII	Eu	10	Lu	п	Ta	111	0
Sample ID	[µg/g]	[%]	[µg/g]	[%]	[µg/g]									
This work														
P-1.1	0.87	1.16	0.62	0.91	1.76	4.48	1.83	1.32	1.405	1.68	1.55	1.78	2.69	2.58
P-1.2	0.62	0.63	0.51	0.69	3.85	2.24	2.68	1.53	1.375	1.65	1.21	0.83	4.29	2
P-1.3	0.44	1.21	0.32	0.55	0.73	0.89	0.58	3.19	0.96	0.94	2.17	0.81	0.86	0.54
P-2.1	1.05	0.95	0.86	1.11	1.83	1.57	1.711	1.17	0.77	2.29	1.29	1.87	2.37	2.67
P-2.2	1.24	1.53	1.07	1.27	1.83	1.48	1.54	1.33	1.89	2.06	1.13	1.83	2.36	2.96
P-2.3	1.25	1.29	0.98	1.31	1.85	1.51	1.56	2.2	1.78	2.45	1.19	1.72	2.27	3.10
P-3.1	0.27	0.95	0.27	0.34	1.15	0.94	0.86	2.32	1.02	1.42	0.44	0.32	1.03	0.91
P-3.2	0.33	0.681	0.24	0.34	0.96	0.81	0.83	2.61	1.11	1.35	0.43	0.6	1.07	1.17
P-3.3	0.42	1.18	0.39	0.42	0.71	0.75	0.55	1.16	0.74	0.90	0.79	0.72	0.79	0.69
P-4.1	0.35	1.37	0.22	0.37	0.69	0.83	0.51	2.28	0.62	1.23	0.39	0.37	0.82	0.60

P-4.2	0.38	1.26	0.22	0.41	0.69	0.81	0.59	0.91	0.87	0.87	0.41	0.86	0.57	0.74
P-4.3	0.36	0.74	0.28	0.40	0.55	0.73	0.45	2.86	0.73	1.03	0.49	0.64	0.49	0.57
P-5.1	0.86	0.63	0.67	0.94	1.45	1.97	1.52	1.29	1.09	1.81	1.44	1.41	0.22	1.76
P-5.2	0.84	0.89	0.59	1.00	1.56	2.35	1.61	3.12	1.9	2.16	1.88	1.3	2.36	2.27
P-5.3	0.98	0.76	0.75	1.04	1.35	1.73	1.57	1.21	1.62	2.09	1.29	1.58	2.01	2.00
P-6.1	0.37	0.82	0.19	0.42	0.4	0.69	0.44	2.16	0.75	0.90	0.55	1.81	0.70	0.60
P-6.2	0.38	0.47	0.21	0.43	0.44	0.76	0.38	2.59	1.06	1.03	0.55	4.32	0.51	0.27
P-6.3	0.47	0.43	0.29	0.55	0.36	0.67	0.39	1.21	1.46	1.39	1.44	0.76	0.59	0.59
P-7.1	0.38	1.05	0.33	0.43	0.67	1.16	0.67	1.32	0.68	0.84	0.61	3.89	0.81	1
P-7.2	0.34	0.47	0.19	0.34	0.66	1.16	0.54	0.96	0.75	0.87	0.40	2.56	0.92	1.62
P-7.3	0.39	0.55	0.25	0.36	0.41	0.71	0.47	2.33	0.89	1.06	0.51	0.39	0.56	0.62
P-8.1	0.73	0.53	0.52	0.73	2.71	1.67	1.43	1.35	1.84	2	2.55	1.31	3.89	2.79
P-8.2	0.70	0.58	0.55	0.72	1.95	1.16	1.91	1.6	1.14	1.65	1.53	1.3	3.04	1.64
P-8.3	0.74	0.95	0.65	0.74	1.45	0.89	1.61	1.22	1.46	1.55	1.61	0.8	2.45	2.46
P-9.1	0.08	0.53	0.29	0.57	0.13	0.57	1.34	1.17	1.39	1.68	1.72	0.89	0.16	2.19
P-9.2	0.37	0.84	0.29	0.41	0.59	1.13	0.31	1.35	1.01	1	0.49	1.21	0.38	0.60
P-9.3	0.32	0.58	0.30	0.49	0.74	1.78	0.75	1.68	0.53	0.61	0.56	1.27	0.9	0.68
P-10.1	0.43	0.97	0.29	0.51	0.71	1.46	0.81	1.97	1.16	1.32	0.68	0.57	0.89	0.71
P-10.2	0.35	0.87	0.58	0.61	0.77	1.59	0.89	0.87	1.27	1.65	0.66	1.06	1.23	1.45
P-10.3	0.38	0.63	0.19	0.41	0.32	1.16	0.32	0.79	0.69	0.97	0.49	1.14	0.40	1.73
Mean(n=30)	0.56	0.85	0.44	0.63	1.11	1.32	1.02	1.70	1.13	1.42	1.02	1.33	1.39	1.45
Min.	0.08	0.45	0.19	0.34	0.13	0.57	0.31	0.79	0.53	0.61	0.39	0.32	0.16	0.27
Max.	1.25	1.53	1.07	1.31	3.85	4.48	2.68	3.19	1.9	2.45	2.55	4.32	4.29	3.10

CF<1	Low Contamination
$1 \le CF < 3$	Moderate Contamination
3 <u>≤</u> CF<6	Considerable Contamination
CF≥6	Very High Contamination

Table S4: Calculated results of site-specific environmental indices (C_d , mC_d , and PLI).

Sample ID	Degree of Contamination (C_d)	Modified degree of Contamination $({}^{mC}{}_{d})$	Pollution Load Index (PLI)
	$C_{d=}\sum CF$	$mC_d = \frac{1}{n} \sum_{i=1}^n CF_i$	$PLI= (CF1*CF2*CFn)^{(1/n)}$
This work			
P-1.1	24.62	1.76	1.56
P-1.2	24.10	1.72	1.38
P-1.3	14.18	1.01	0.84
P-1	20.97	1.49	1.26
P-2.1	21.49	1.53	1.43
P-2.2	23.53	1.68	1.61
P-2.3	24.47	1.75	1.66
P-2	23.16	1.65	1.57
P-3.1	12.22	0.87	0.72
P-3.2	12.54	0.89	0.74
P-3.3	10.22	0.73	0.69
P-3	11.66	0.83	0.72
P-4.1	10.64	0.76	0.62
P-4.2	9.58	0.68	0.63
P-4.3	10.33	0.74	0.61
P-4	10.18	0.73	0.62

P-5.1	17.05	1.22	1.08
P-5.2	23.84	1.70	1.54
P-5.3	19.99	1.43	1.36
P-5	20.29	1.45	1.33
P-6.1	10.80	0.77	0.64
P-6.2	13.39	0.96	0.64
P-6.3	10.61	0.76	0.65
P-6	11.6	0.83	0.64
P-7.1	13.84	0.99	0.79
P-7.2	11.79	0.84	0.68
P-7.3	9.52	0.68	0.57
P-7	11.72	0.84	0.68
P-8.1	24.03	1.72	1.44
P-8.2	19.46	1.39	1.24
P-8.3	18.57	1.31	1.21
P-8	20.69	1.47	1.29
P-9.1	12.71	0.91	0.61
P-9.2	9.98	0.71	0.63
P-9.3	11.18	0.79	0.69
P-9	11.29	0.80	0.64
P-10.1	12.48	0.89	0.79
P-10.2	13.83	0.99	0.91
P-10.3	9.64	0.69	0.58
P-10	11.98	0.86	0.76
Mean	15.35	1.096	0.95

Classification	Degree
C _d < 8	Low contamination
$8 \leq C_d \leq 16$	Moderate contamination
$16 \le C_d < 32$	Considerable contamination
$C_d \ge 32$	Very High contamination

mC _d < 1.5	Nil to very low contamination
$1.5 \le mC_d < 2$	Low contamination
$2 \leq mC_d < 4$	Moderate contamination
$4 \leq mC_d < 8$	Considerable contamination
$8 \le mC_d < 16$	Very High contamination
$16 \le mC_d < 32$	Extremely High contamination
$mC_{d} > 32$	Ultra-High contamination

PLI=0	Perfection
PLI<1	Baseline Level
PLI>1	Contaminated Level

Chamical Components		Principle Component							
Chemical Components	PC 1	PC 2	PC 3	PC 4	PC 5				
Sc	.800	.385	.078	.281	.174				
Ti	.172	.054	.108	.894	070				
V	.844	.343	016	.292	.084				
Fe	.840	.376	.100	.202	.149				
La	.513	.704	.002	051	203				
Ce	.110	.925	.029	.086	.181				
Sm	.605	.677	027	073	182				
Eu	181	110	.893	.123	041				
Yb	.721	.292	.374	217	072				
Lu	.829	.339	.176	010	083				
∑LREE	.294	.951	.020	.039	.047				
$\overline{\Sigma}$ HREE	.505	.183	.821	079	086				
$\overline{\Sigma}$ REE	.300	.948	.034	.038	.045				
Hf	.629	.290	.226	343	158				
Та	.094	.029	087	077	.933				
Th	.563	.656	.025	090	183				
U	.796	.436	138	.004	018				
²²⁶ Ra	.908	.130	042	.254	.127				
²³² Th	.838	.257	.024	011	.081				
⁴⁰ K	.711	008	238	.509	146				
Eigenvalues	10.959	2.192	1.880	1.235	1.107				
% of Variance	54.797	10.959	9.402	6.177	5.535				
Cumulative %	54 797	65 755	75 158	81 335	86 870				

Table S5 : Principal component analysis (PCA) for elements in the sediments of the Punarbhaba river.

 Cumulative %
 54.797
 65.755
 75.158
 81.335
 86.870

 Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

	Sc	Ti	V	Fe	La	Ce	Sm	Eu	Yb	Lu	∑LREE	∑HREE	∑REE	Hf	Та	Th	U	²²⁶ Ra	²³² Th	⁴⁰ K
Sc	1																			
Ti	.358	1																		
V	.930**	.383*	1																	
Fe	.945**	.317	.958**	1																
La	.634**	.076	.614**	.589**	1															
Ce	.503**	.138	.462*	.523**	.543**	1														
Sm	.666**	.060	.721**	.729**	$.870^{**}$.599**	1													
Eu	092	.082	195	114	083	142	158	1												
Yb	.625**	.082	.648**	.701**	.532**	.366*	.607**	002	1											
Lu	.795**	.147	.840**	.875**	.627**	.419*	.758**	061	.787**	1										
∑LREE	.622**	.130	.587**	.623**	.795**	.941**	.792**	139	.484**	.563**	1									
∑HREE	.487**	.126	.447*	.537**	.405*	.226	.430*	.591**	.801**	.646**	.329	1								
∑REE	.627**	.131	.592**	.628**	.797**	.940**	.795**	128	.495**	.571**	1.000^{**}	.344	1							
Hf	.479**	040	.482**	.572**	.503**	.343	.590**	.011	.657**	.589**	.456*	.543**	.463*	1						
Та	.165	090	.107	.144	027	.126	025	099	028	038	.079	085	.077	065	1					
Th	.628**	.080	.606**	.585**	.928**	.532**	.833**	085	.596**	.630**	.759**	.449*	.762**	.563**	.005	1				
U	.759**	.150	.807**	$.818^{**}$.652**	.518**	.778**	320	.684**	.827**	.645**	.396*	.648**	$.580^{**}$.087	.693**	1			
²²⁶ Ra	.879**	.337	.884**	.862**	.561**	.253	.570**	139	.549**	.732**	.412*	.397*	.417*	.481**	.174	.586**	.744**	1		
²³² Th	.774**	.177	.731**	.749**	.642**	.345	.602**	139	.642**	.693**	.509**	.457*	.514**	.651**	.153	.688**	$.680^{**}$.875**	1	
⁴⁰ K	.613**	.511**	.698**	.601**	.402*	.061	.469**	177	.258	.515**	.212	.142	.213	.249	013	.427*	.634**	.761**	.560**	1

Table S6: Correlation matrix for the analysed parameters in the sediment samples Punarbhaba river, Bangladesh.

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

			Profile	Contributi	on (µg/g)			Profile Contribution				
Element	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Element	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	
Sc	1.70	4.53	0.86	0.96	0.07	Sc	20.9	55.8	10.6	11.8	0.9	
Ti	0.06	0.08	0.05	0.15	0.00	Ti	18.2	23.3	14.9	43.0	0.6	
V	6.76	26.13	3.80	7.50	0.00	V	15.3	59.1	8.6	17.0	0.0	
Fe	0.61	1.26	0.31	0.32	0.03	Fe	23.9	49.9	12.1	12.8	1.3	
La	0.00	12.87	2.72	2.60	16.15	La	0.0	37.5	7.9	7.6	47.0	
Ce	4.48	19.75	42.70	9.13	7.06	Ce	5.4	23.8	51.4	11.0	8.5	
Sm	0.33	1.85	0.71	0.71	1.44	Sm	6.6	36.7	14.2	14.0	28.5	
Eu	1.08	0.00	0.24	0.25	0.19	Eu	61.4	0.0	13.7	13.9	11.0	
Yb	0.95	0.65	0.28	0.18	0.24	Yb	41.4	28.2	12.3	7.8	10.2	
Lu	0.13	0.16	0.05	0.09	0.04	Lu	28.3	34.4	10.4	18.9	8.0	
∑LREE	4.74	34.60	46.17	12.43	24.53	∑LREE	3.9	28.3	37.7	10.1	20.0	
$\overline{\Sigma}$ HREE	2.09	0.74	0.59	0.47	0.50	$\overline{\Sigma}$ HREE	47.5	16.9	13.5	10.6	11.5	
$\overline{\Sigma}$ REE	6.83	35.34	46.78	12.89	25.04	$\overline{\Sigma}$ REE	5.4	27.9	36.9	10.2	19.7	
$\overline{\mathrm{H}}\mathrm{f}$	2.98	1.47	0.77	0.11	0.80	$\overline{\mathrm{H}}\mathrm{f}$	48.7	24.0	12.6	1.7	13.0	
Та	0.35	0.29	0.24	0.46	0.00	Та	26.1	21.5	17.7	34.6	0.0	
Th	0.97	6.67	1.61	0.00	5.97	Th	6.3	43.8	10.6	0.0	39.3	
U	0.70	1.95	0.53	0.96	0.30	U	15.7	43.9	12.0	21.7	6.8	
²²⁶ Ra	11.85	39.79	0.00	16.92	0.72	²²⁶ Ra	17.1	57.4	0.0	24.4	1.0	
²³² Th	21.73	39.96	4.41	14.54	6.81	²³² Th	24.8	45.7	5.0	16.6	7.8	
⁴⁰ K	156.40	223.25	90.36	390.82	56.97	⁴⁰ K	17.0	24.3	9.8	42.6	6.2	

Table S7: Source apportioning contributions of metal(oid)s in Punarbhaba River sediment by the positive matrix factorization (PMF) model.

Fig. S1: Inverse distance weighting (IDW) map for the spatial distribution of elemental abundances in the Punarbhaba river basin, Bangladesh.

Fig. S2: Upper continental crust (UCC: Rudnick and Gao, 2014) normalized rare earth elements abundances in the sediments of Punarbhaba river basin.

Sampling Site

Fig. S3: Fractional contributions of ²²⁶Ra, ²³²Th and ⁴⁰K to the total absorbed dose rate (D) in all sites.

Fig. S4: Distributions of activity ratios ²³²Th/⁴⁰K, ²²⁶Ra/⁴⁰K, and ²³²Th/ ²²⁶Ra in all sampling sites of the Bangladesh.

Fig. S5: Calculated radiological indices for the sediment samples (n = 30) collected from the Punarbhaba River basin along with their average \pm SD (marked by solid blue line with violet shadow) and recommended (dotted red line) values (OECD 1979; UNSCEAR 2000, 2008; Darwish et al. 2015). The figure represents a) Radium equivalent activity (Ra_{eq}); b) external hazard index (H_{ex}); c) internal hazard index (H_{in}); d) absorbed dose rate (D); e) annual effective dose rate (E_{aed}); f) gamma representative level index (I_γ); g) activity utilization index (AUI); and h) excess lifetime cancer risk (ELCR).