Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2024

Supplementary materials

Supplementary figures

Fig. S1. Influence of MOF-74(Co) on the seedling growth. Data represent mean \pm SD (n=3). * *p* <0.05 compared with the control group.

Fig. S2. Influence of Co²⁺ (a, b) and DHTA on the seedling growth at MOF-74(Co) equivalent concentrations. Data represent mean \pm SD (n=3). * *p* <0.05 compared with the control group.

Fig. S3. Structural changes of pea root after the exposure to MOF-74(Co). (a) Control group; (b) 10 mg/L of MOF-74(Co); (c, d) 1000 mg/L of MOF-74(Co).

Supplementary table

Table S1. Formulae and glossary of terms used by the JIP-test for the analysis of thefluorescence transient *O-J-I-P* (Figs. 5&S4). Adapted from Strasser et al. (2004)

PS II	Photosystem II
Q_A and Q_B	Q _A : Primary quinone acceptor of PS II
	and Q_B : Secondary quinone acceptor of
	PS II
RC	PS II reaction center
CS	Excited cross section
ABS	Absorption of solar flux
TR	Trapped energy flux
ET	Electron transport flux
DI	Dissipated energy flux
PI	Performance indexes

Glossary of terms used by the JIP -test for the fluorescence transient O-J-I-P

Data extracted from the recorded fluorescence transient O-J-I-P

F_t	Fluorescence at time t after onset of
	actinic illumination
$F_P = (F_M)$	Maximal recorded (=maximal possible)
	Fluorescence, at the peak P of O-J-I-P
t_{FM}	Time (in ms) to reach maximal
	Fluorescence $F_{\rm M}$

Area	Total complementary area between
	Fluorescence induction curve and $F=F_{\rm M}$

Fluorescence parameters derived from the extracted data

$F_{v} \equiv F_{t} - F_{0}$	Variable fluorescence at time t
$F_m \equiv F_M - F_0$	Maximal variable fluorescence
$V_j \equiv (F_J - F_0) / (F_M - F_0)$	Relative variable fluorescence at the J-
	step
$S_m = (Area)/(F_M - F_0)$	Normalized total complementary area
	above the O-J-I-P transient (reflecting
	multiple-turnover Q _A reduction events)
$N \equiv S_m / S_s = S_m M_0(1/V_j)$	Turnover number: number of Q_A
	reduction events between time 0 and $t_{\rm FM}$

Specific energy fluxes (per Q_A -reducing

PS II reaction center-RC)

$ABS/RC = M_0(1/V_j)(1/\varphi_{P0})$	Absorption flux per <i>RC</i>
$TR_0/RC = M_0(1/V_j)$	Trapped energy flux per RC (at t=0)
$ET_0/RC = M_0(1/V_j)\Psi_0$	Electron transport flux per RC (at t=0)
$DI_0/RC = ABS/RC - TR_0/RC$	Dissipated energy flux per RC (at t=0)

Yields or flux ratios

$\varphi_{Po} = TR_0 / ABS = [1 - (F_0 / F_M)]$	Maximum quantum yield of primary
	photochemistry (at $t = 0$)
$\Psi_0 = ET_0 / TR_0 = (1 - V_j)$	Probability (at $t = 0$) that a trapped

	exciton moves an electron into the
	electron transport chain beyond $Q_{\rm A}$ -
$\varphi_{E0} = ET_0 / ABS = [1 - (F_0 / F_M)] \Psi_0$	Quantum yield of electron transport (at t
	= 0)
φ_{D0} =1- φ_{P0} = F_0/F_M	Quantum yield of energy dissipation (at
	t = 0)

Supplementary reference

Strasser, R. J., Tsimilli-Michael, M., Srivastava, A., 2004. Analysis of the chlorophyll *a* fluorescence transient, in Papageorgiou, G.C., Govindjee (Eds), Chlorophyll a Fluorescence A Signature of Photosynthesis. Springer, Dordrecht, pp. 321-362.