Supplementary Information for

Ozone, hydrogen peroxide, and peroxymonosulfate disinfection of MS2

coliphage in water

Zi-Chen Yang¹, Wen-Long Wang¹, Zi-Bo Jing¹, Yi-Qing Jiang¹, He-Qing Zhang²,

Min-Yong Lee³, Lu Peng^{1, *}, Qian-Yuan Wu¹

1 Key Laboratory of Microorganism Application and Risk Control of Shenzhen,

Guangdong Provincial Engineering Research Center for Urban Water Recycling and

Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen

International Graduate School, Tsinghua University, Shenzhen 518055, China

2 CSCEC Scimee Sci.&Tech. Co., Ltd., Beijing 100084, PR China

3 National Institute of Environment Research, Ministry of Environment, Incheon

22689, Republic of Korea

*Corresponding author.

Lu Peng

Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China, penglu@sz.tsinghua.edu.cn Number of pages: 11 (including cover sheet)

Number of texts: 1

Number of tables: 4

Number of figures: 2

Text S1. The oxidant demand of the disinfection system	4
Table S1. The component list of Coliphage MS2 liquid medium	5
Table S2. Water quality parameters of the secondary effluent	6
Table S3. Five regions and typical organics of EEM	7
Table S4. The disinfection performance of oxidants in different conditions	8
Figure S1. The decay of oxidants within 30 min in the DI water	9
Figure S2. The decay of oxidants within 30 min in the secondary effuent	10
Reference	11

Text S1. The oxidant demand of the disinfection system

0.1 mM, 1 mM PMS, and 50 mM H_2O_2 were respectively added into the disinfection system without MS2 coliphage (5 mM PBS and coliphage MS2 liquid medium), The concentration of oxidants did not change significantly. The nutrient composition of the coliphage MS2 liquid medium was shown in Table.S1, and it was thousand-fold diluted before the oxidant was added (the diluted concentration: <10.0 mg/L tryptone, <10.0 mg/L yeast extract, <8.0 mg/L sodium chloride).

Tutrition	Concentration (g/L)
tryptone	10.0
yeast extract	1.0
sodium chloride	8.0

Table S1. The component list of Coliphage MS2 liquid medium

рН	TOC (mg-C/L)	NH ₃ -N(mg/L)	Turbidity (NTU)
7.92	6.650	0.22	3.19

Table S2. Water quality parameters of the secondary effluent

Emission (nm)	Excitation (nm)	Region	Typical organics
220-250	280-330	Ι	Aromatic protein I
220-250	330-380	П	Aromatic protein II
220-250	380-500	III	Fulvic acid-like materials
250-280	280-380	IV	Soluble microbial metabolites
250-400	380-500	V	Humic acid-like organics

Table S3. Five regions and typical organics of $EEM^{[1]}$

Disinfectant	Water	Dose (mM)	Time (min)	Log(N/N ₀)
	Ultrapure Water	0.005	30	0.89±0.06
	Ultrapure Water	0.03	30	1.25 ± 0.11
	Ultrapure Water	0.05	30	$3.90{\pm}0.02$
	Ultrapure Water	0.1	0.5	4.59 ± 0.29
	Ultrapure Water	0.1	1	4.51±0.12
0	Ultrapure Water	0.1	3	4.55 ± 0.40
O_3	Ultrapure Water	0.1	5	4.36±0.13
	Ultrapure Water	0.1	10	4.41 ± 0.09
	Ultrapure Water	0.1	15	5.10 ± 0.10
	Ultrapure Water	0.1	30	5.21±0.38
	Secondary Effluent	0.1	30	4.32 ± 0.24
	Ultrapure Water	0.25	30	6.88
	Ultrapure Water	0.01	30	$0.87{\pm}0.06$
	Ultrapure Water	0.1	30	$1.94{\pm}0.14$
	Ultrapure Water	0.25	30	2.25 ± 0.11
	Ultrapure Water	1	30	4.30 ± 0.02
	Ultrapure Water	1	0.5	$1.84{\pm}0.04$
	Ultrapure Water	1	1	$1.85 {\pm} 0.05$
DMC	Ultrapure Water	1	3	$1.98{\pm}0.04$
PIMS	Ultrapure Water	1	5	2.23 ± 0.10
	Ultrapure Water	1	10	3.14 ± 0.11
	Ultrapure Water	1	15	3.46 ± 0.02
	Ultrapure Water	1	30	5.01±0.21
	Ultrapure Water	1	30	5.13±0.17
	Secondary Effluent	1	30	4.44 ± 0.21
	Ultrapure Water	2.5	30	6.29±0.71
	Ultrapure Water	1	30	$0.76{\pm}0.02$
	Ultrapure Water	2.5	30	$1.09{\pm}0.01$
	Ultrapure Water	5	30	2.35 ± 0.12
	Ultrapure Water	10	30	$2.95{\pm}0.01$
	Ultrapure Water	25	30	4.48 ± 0.12
	Ultrapure Water	50	0.5	$3.20{\pm}0.03$
ИО	Ultrapure Water	50	1	3.27 ± 0.14
$\Pi_2 O_2$	Ultrapure Water	50	3	4.61±0.36
	Ultrapure Water	50	5	4.83±0.16
	Ultrapure Water	50	10	4.87 ± 0.25
	Ultrapure Water	50	15	5.21 ± 0.06
	Ultrapure Water	50	30	5.36 ± 0.22
	Secondary Effluent	50	30	4.04 ± 0.16
	Ultrapure Water	100	30	6.12±0.71

Table S4. The disinfection performance of oxidants in different conditions

Figure S1. The decay of oxidants within 30 min in the DI water

Figure S2. The decay of oxidants within 30 min in the secondary effuent

Reference

[1] Chen, W., Westerhoff, P., Leenheer, J.A. and Booksh, K. 2003. Fluorescence Excitation–Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology 37(24), 5701-5710.