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2.3. Characterization

The crystal information for the synthesized products was measured using a Rigaku
Ultima IV powder X-ray diffractometer (XRD) utilizing a Cu Ka radiation source. The
elemental and chemical composition states of the products were analyzed using a ULVAC-PHI
ESCA 5800 X-ray photoelectron spectrometer (XPS) with an Al Ka excitation source. The
Cu,O concentrations in the bulk were estimated using a Rigaku ZSX Primus II X-ray
fluorescence (XRF) spectrometer in wavelength dispersive mode. The morphology of the
synthesized products was obtained by ZEISS Ultra-55 field emission scanning electron
microscopy (FE-SEM) and JEOL JEM-2100HCKM high-resolution transmission electron
microscopy (HR-TEM). Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH)
were carried out on Belsorp-Mini, Microtrac. The bandgap energy of the synthesized products
was estimated using a Shimadzu UV-2450 UV—Vis diffuse reflectance spectrophotometer
(DRS) equipped with an ISR-2200 integrating sphere attachment. The steady state
photoluminescence (PL) spectra and time-resolved PL (TR-PL) spectra of the samples were
acquired using a F-4500FL spectrophotometer and an Edinburgh Photonics FLS980
spectrometer. The ESR was executed on a Bruker ESP 300E EPR spectrometry with an X-band

frequency of 8.75-9.65 GHz.

2.4. X-ray absorption spectroscopy (XAS)

Cu K-edge XANES and EXAFS spectra for the reference samples (Cu foil, CuO and
Cu,0) synthesized catalysts were recorded using the BL15 beamline of the Kyushu
Synchrotron Light Research Center, Japan. The photon energies of the X-ray beam were
adjusted from 8.9 to 9.2 keV using a Si(111) double-crystal monochromator. The samples were
diluted with a high purity hexagonal boron nitride powder and mounted onto a sample holder

using Kapton tape. The spectra for the samples were measured at room temperature in



transmission mode. The storage ring was operated at a beam current of 287.1 mA and energy
of 1.40 GeV. Linear combination (LC) fitting was performed to process the obtained data by
utilizing the Athena programme suite (Demeter ver. 0.9.26) within the IFEFFIT software

package.

2.5. Reversed double-beam photoacoustic spectroscopy (RDB-PAS)

A sample container containing ~200 mg of synthesized products was placed in a PAS
cell equipped with an electret condenser microphone and quartz window on the upper side,
which was infused with methanol-saturated N, gas for 30 min before being firmly closed. A
grating monochromator attached to a Xe lamp was controlled at 80 Hz by a light chopper that
transmitted a beam of light over the wavelength range of 650—350 nm via a cell window and
the PA signal was monitored using a digital lock-in amplifier. Based on the amount of
photoabsorption change for accumulated electrons, the energy-resolved distribution of electron
traps (ERDT)/conduction-band bottom (CBB) patterns were measured for the synthesized

samples.

2.6. Photoelectrochemical characterization

The electrochemical impedance spectroscopy (EIS), transient photocurrent (TPC)
response and Mott—Schottky (M-S) plots of the synthesized products were measured using an
Autolab potentiostat electrochemical workstation. A three-electrode cell system was used
comprising a Pt wire counter electrode, Hg/Hg,SO, reference electrode and glassy carbon (GC)
working electrode in 0.5 M Na,SO, electrolyte solution. The working electrode was prepared
as follows: 5 mg synthesized product was uniformly dispersed in 0.5 mL Nafion containing 1:1
v/v of a water/ethanol mixture. After 30 min of ultrasonication, 5 uL of homogeneous colloidal
solution was drop cast onto the GC electrode (3 mm diameter) and dried at ambient

temperature. EIS Nyquist plots were recorded with a 10 mV AC signal in the frequency range



of 100 kHz to 0.1 Hz. The light source used for measuring the TPC response was a 200 W Hg-

Xe arc lamp. M-S measurements were made by scanning the potential from — 1.0 to 1.0 V.
2.7. Trimethoprim (TMP) photocatalytic degradation experiments

The synthesized products (20 mg) were uniformly dispersed in 50 mL of 0.163 mM
TMP solution in a quartz cell photoreactor using an ultrasonicator. The reaction mixtures were
agitated in the dark for 60 min to establish adsorption-desorption equilibrium. After that, 500
W Xenon lamp (USHIO optical module) was used to irradiate the reaction mixtures. The
samples were collected at regular intervals and filtered using a CPO20AN filter for high-
performance liquid chromatography (HPLC) analysis. The TMP removal efficiency was

computed using Eq. (1) as follows:

TMP(initial) - TMP(final) 100
*
TMP(initial) (1)

TMP removal (%) =

where the initial and final molar concentrations of TMP denote the concentrations at the

beginning and end of the reaction, respectively.

Moreover, the radical trapping experiments were carried out under similar conditions
as for the photocatalytic tests, with the exception that 0.1 mM scavengers were introduced
before the reaction. The scavengers employed in these experiments were isopropyl alcohol

(IPA), ethylenediaminetetraacetic acid (EDTA), and p-benzoquinone (BQ).

2.8. Chromatography conditions

The TMP concentration was scrutinized using a Jasco UV-2075Plus Intelligent UV—-Vis
Detector HPLC System with a Shodex Silica C18 M-4E HPLC Column (5 pm, 4.6 x 250 mm)
measured at a wavelength of 254 nm. The mixture was separated at 25 °C with selectivity (al-
2.42, a2-1.47) and pressure (min 0.2 MPa, max 20 MPA). The eluent comprised 60:10:30

(v/v/v) acetonitrile-water—formic acid (25 mM) with a 0.6 mL-min"! flow rate. Before



identification of the reaction products via the photocatalysis process, HPLC was calibrated for
TMP using reference compounds (hydroquinone, benzoquinone, fumaric, maleic and oxalic

acids).

Liquid chromatography—mass spectrometry (LC—MS/MS, Agilent 6545 LC/Q-TOF)
with an Agilent ZORBAX RRHD Eclipse Plus (C18, 2.1 mm, 150 mm, 1.8 um) analytical
column was used to identify the TMP products. The gradient elution used a mobile phase A
composed of 0.1% formic acid in water and methanol at 95:5 (v/v) and the mobile phase B was
composed of acetonitrile. The injection volume was 10 pL, the flow rate was 0.4 mL-min!,
and the column temperature was 25 °C. The TMP products were analyzed in the positive ion

mode (ESI+) with a mass scan range of 100—-1000 m/z.

2.9. Photocatalytic hydrogen production

Typically, 20 mg of synthesized products was uniformly dispersed in 50 mL of distilled
water containing 2 mL of methanol as a sacrificial electron donor using an ultrasonicator. Prior
to UV-Vis light irradiation, the N, gas was continuously purged in a sealed quartz photoreactor
for 60 min to remove all the dissolved oxygen from the reaction mixture. The evolved gas was
collected in a 1 mL airtight syringe at a periodic interval and analyzed using gas

chromatography.



Table S1. EXAFS Fitting parameters for CTNF-2 and CTNF-2(NS) nanocomposites.

Samples Shell | Atom type | C.N.2 | R(A) | AE®(eV)* | o2 (1073, A2%)d
CTNF-2 Ist Cu-O 4.084 1.97 0.129 0.009
2nd Cu-Ti 1.468 2.52 0.046 0.009
CTNF-2(NS) Ist Cu-O 4.356 1.94 -0.907 0.006
2nd Cu-Ti 0.764 2.47 -0.907 0.006

a2 Coordination numbers. ® Distance. ¢ Threshold energy difference. ¢ Debye-Waller factor.

Table S2. Elemental atomic % of the CTNF-2 and CFTNF-2 nanocomposites based on STEM-
EDX and XPS analysis.

Elements EDX-Atomic % XPS-Atomic %
CTNF-2 | CFTNF-2 | CTNF-2 | CFTNF-2

Ti 41.83 35.48 44.55 33.39

Cu 19.83 17.39 5.67 9.26

Fe - 1.9 - 3.23

(0 38.34 45.22 49.78 54.11
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Fig. S1. Core level O 1s XPS spectra of the TNF, Cu,O, CTNF-2, CTNF-2(NS) and CFTNF-

2 nanocomposites.
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Fig. S2. FE-SEM images of (a, b) CTNF-1, (c, d) CTNF-3, (e, f) CTNF-5, (g, h) CTNF-10

nanocomposites.



Fig. S3. HR-TEM images of CFTNF-2 nanocomposites
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Fig. S4. (a) BET and (b) BJH plots of TNF, Cu,0, CTNF-2 and CFTNF-2 nanocomposites.
(c) UV—Vis DRS spectra of TNF, Cu,0, CTNF-x, CTNF-2(NS) and CFTNF-2

nanocomposites.
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Fig. S5. Tauc plot of (a) TNF, (b) Cu,0, (c) CTNF-1, (d) CTNF-2, (e) CTNF-3, (f) CTNF-5,
(g) CTNF-10, (h) CTNF-2(NS) and (i) CFTNF-2 nanocomposite.
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Fig. S6. Optimisation of Iron content in CTNF nanocomposites over photocatalytic H,

production performance.
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Fig. S7. Photocatalytic TMP degradation performance (a) Optimisation of Iron content in
CTNF nanocomposites and (b) Reusability of CFTNF-2 nanocomposites.
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Fig. S8. (a) Reactive trapping experiment over CFTNF-2 nanocomposite and (b) ESR spectra
of DMPO-+O,™ and DMPO-+OH adducts under dark and light irradiation with CFTNF-2
nanocomposites.
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Fig. S10. LC-MS/MS spectra of TMP transformation products (5 min) over CFTNF-2

nanocomposite.
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Fig. S11. LC-MS/MS spectra of TMP transformation products (30 min) over CFTNF-2

nanocomposite.
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Fig. S12. LC-MS/MS spectra of TMP transformation products (60 min) over CFTNF-2

nanocomposite.
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Fig. S13. LC-MS/MS spectra of TMP transformation products (180 min) over CFTNF-2
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Fig. S15. Mott-Schottky plots of (a) Cu,0, (b) TNF, (c) Fe,O3, (d) CTNF-2, and (e) CFTNF-

2 nanocomposites.



