Supporting information

Effective Control of the Tomato Wilt Pathogen using TiO₂ Nanoparticles as a Green Nanopesticide

Xiaohong Pan^a, Danyue Nie^a, Xueping Guo^a, Shanshan Xu^a, Dingyang Zhang^a, Fang Cao^a and Xiong Guan^{b,*}

^a State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China.

*CORRESPONDING AUTHOR

E-mail: guanxfafu@126.com

Gene	primers (5'→3')		
phcA-F	GGACATGATCTTCACGGTCAACT		
phcA-R	GACTCATCCTCCTTTTCTGCATC		
phcB-F	CGATTATCTGTCCGACAAGGTATG		
<i>phcB</i> -R	CATTCCAGCAGGTGTTCCAT		
phcR-F	GCGGAATACAGCGACATC		
phcR-R	GCTTCTCCAGGATCTTGAA		
epsA-F	AATGTCTACGTGATCCGCCG		
epsA-R	GTACACCACGTCCTTCGGTT		
epsF-F	GCTTTTCGTCGTGGTTTGCT		
epsF-R	GGAAGCCAGCAACAACAGTG		
egl-F	GGAAGCCAGCAACAACAGTG		
egl-R	GGAAGCCAGCAACAACAGTG		
<i>pilT-</i> F	AAGAACAAAGCGTCTGATCTGC		
<i>pilT-</i> R	CTTCCAGGTTTTCTTCGTAATGCT		
<i>hrp-</i> F	TGCTTGGGCTTGGCTTCATC		
hrp-R	CATGAGCAAGGACGAAGTCAAG		
qRSgyrA-F	CGACTGGAACCGTCCCTAC		
qRSgyrA-R	TCCGCACGATGGTGTCATA		

Table S1 The primers of phcA, phcB, phcR, epsA, epsF, egl, pilT, hrp and qRSgyrA genes

Figure S1. The UV-Vis absorption wavelength of TiO₂

Figure S2. Antibacterial effect of 0.05 mg/L TiO_2 NPs comparing with market nano- TiO_2 and non-nano- TiO_2

Table S2 The effective concentration comparation for 50% inhibition (EC₅₀) and minimum

Pesticide	Туре	Origin	EC ₅₀ (mg/L)	MIC (mg/L)	Reference
Copper Hydroxide WG	Commercial	Korea	/	200	1
Copper hydroxide + Oxadixyl WP	Commercial	Korea	/	200	1
Copper oxychloride + Dithianon WP	Commercial	Korea	/	200	1
Copper oxychloride + Kasugamycin WP	Commercial	Korea	/	100	1
Streptomycin + Validamycin A WP	Commercial	Korea	/	10	1
Oxine copper + Polyoxin B WP	Commercial	Korea	/	10	1
Bioxeda	Commercial	France	/	210	2
Sporatec	Commercial	U.S.A.	/	710	2
3% Zhongsheng Mycin WP	Commercial	China	1.31	/	3
20%Thiasen Copper SC	Commercial	China	20.45	/	3
72% Agricultural Streptomycin Sulfate WP	Commercial	China	5.20	/	3
53% Suinoline Copper WP	Commercial	China	42.14	/	3
80% Mancozeb WP	Commercial	China	745.60	/	3
20% Conazole WP	Commercial	China	51.96	/	3
1.5% Thiamezole EW	Commercial	China	108.99	/	3
57.6% Cupric Hydroxide GF	Commercial	China	120.88	/	3
0.5% Chitooligosaccharace AS	Commercial	China	2.18	/	3
Caffeic acid phenethyl ester	Commercial	China	285	/	4
Magnesium Oxide NPs	Commercial	China	/	200	5
TiO ₂ NPs	Research	Our lab	60	240	This work

inhibitory concentration (MIC)

Samples	Zeta potential (mV)
R. solanacearum	-60.55±5.39
TiO ₂	40.11±3.15

Table S3 The Zeta potential of R. solanacearum and TiO2

Figure S3. The standard curve of TiO₂ by ICP-MS analysis

Table S4 The quantitative distribution of spraying TiO2 NPs in tomato plants by ICP-MS

Figure S4. a) and b) are average particle size and UV-Vis absorption spectroscopy of TiO₂ NPs dispersed in xylem and phloem sap for 10 min, 30 min, 1 h, 2 h, 4 h and 6 h, respectively.

Figure S5. a) Effect of different concentrations of rutile on tomato height; b) Effect of different concentrations of rutile on tomato fresh weight and dry weight

Figure S6. Effect of TiO_2 NPs on the soil bacterial community. (a) Chao1, ACE, simpson and shannon indexs; (b) the bacterial community abundance at the genus and

class level after treating with or without TiO_2 NPs; (c) NMDS analysis; (d) Hierarchically clustered heatmaps of top 15 dominant bacterial community abundance at class and genus level, respectively. Abbreviations: Soil only treated with the distilled water (CK), soil treated with TiO_2 NPs suspension (TiO₂).

Figure S7. The biosafety evaluation of nano- TiO_2 toward non-target organism goldfish

References

- Lee Y. H., Choi C. W., Kim S. H., *et al.*, Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. The plant pathology journal, 2012, 28(1):32-39.
- [2] La Torre, A., Caradonia, F., Matere, A. *et al.*, Using plant essential oils to control Fusarium wilt in tomato plants[J]. European Journal of Plant Pathology, 2016, 144, 487-496.
- [3] Wang. Y., Yin X. H., Wang M., *et al.*, The Antibacterial Activity of Several Fungicides to *Ralstonia solanacearum*. Journal of Mountain Agriculture and Biology, 2014, 33(3): 8-12.
- [4] Wang J. Z., Yan C. H., Zhang X. R., *et al.*, A novel nanoparticle loaded with methyl caffeate and caffeic acid phenethyl ester against *Ralstonia solanacearum*—a plant pathogenic bacteria. RSC Advances, 2020, 10, 3978-3990.
- [5] Cai L., Chen J., Liu Z, *et al.*, Magnesium Oxide Nanoparticles: Effective agricultural antibacterial agent against *Ralstonia solanacearum*. Frontiers in Microbiology, 2018, 9: 790.