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Text S1. Quantitative detection of 1O2.

Since 1,3-diphenylisobenzofuran (DPBF) could react with 1O2 in a molar ratio of 1:1, it was 

applied to quantitatively reflect the production amount of 1O2 in the H2O2 activation system1. Typically, 

30 mg of different K+-modified α-MnO2 catalysts was dispersed in 100 mL of solution with 0.05 

mmol/L of DPBF for adsorption−desorption equilibrium. Then, 50 mM of H2O2 was added to initiate 

the reaction. The concentration of DPBF was measured by UV-2700 spectrophotometer (Shimadzu 

Corporation) at 411 nm. In the background experiments (Fig. S8), sole H2O2 system had no 

degradation ability to DPBF, and the K+-modified α-MnO2 catalysts showed negligible adsorption 

performances for DPBF.



5

Text S2. Density functional theory (DFT) calculation.

We have employed the first-principles2 to perform all (DFT) calculations within the generalized 

gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) formulation3. We have 

chosen the projected augmented wave (PAW) potentials4 to describe the ionic cores and take valence 

electrons into account using a plane wave basis set with a kinetic energy cutoff of 400eV. Partial 

occupancies of the Kohn−Sham orbitals were allowed using the Gaussian smearing method and a 

width of 0.05 eV. The electronic energy was considered self-consistent when the energy change was 

smaller than 10−5 eV. A geometry optimization was considered convergent when the energy change 

was smaller than 0.03 eV Å−1. In our structure, the U correction is used for Mn atoms. The vacuum 

spacing in a direction perpendicular to the plane of the structure is 18 Å for the MnO2 surfaces. The 

Brillouin zone integration is performed using 3×3×1 Monkhorst-Pack k-point sampling for a structure. 

Finally, the adsorption energies (Eads) were calculated as Eads= Ead/sub − Ead − Esub, where Ead/sub, Ead, 

and Esub are the total energies of the optimized adsorbate/substrate system, the adsorbate in the 

structure, and the clean substrate, respectively. The free energy was calculated using the equation:

G=Eads + ZPE − TS

where G, Eads, ZPE and TS are the free energy, total energy from DFT calculations, zero point 

energy and entropic contributions, respectively. 
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Table S1. Parameters of pharmaceutical wastewater.

Parameters Pharmaceutical wastewater

pH 5.6

COD (mg/L) 66.4

TOC (mg/L) 18.7

UV254 (cm−1) 0.457

Turbidity 9.04

DO (mg/L) 7.38
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Table S2. Detected emerging organic contaminants in the pharmaceutical wastewater.

Number Emerging organic contaminants Concentration (μg/L)

1 Oxytetracycline 0.81 ± 0.10

2 Lincomycin 1.73 ± 0.22

3 Tetracycline 1.95 ± 0.46

4 Bisphenol A 3.46 ± 0.12

5 Amoxicillin 4.19 ± 0.22

6 Naproxen 6.67 ± 1.29

7 Roxithromycin 11.09 ± 0.22

8 Erythromycin 18.88 ± 1.01

9 Ciprofloxacin 19.80 ± 0.10

10 Paracetamol 36.49 ± 3.75
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Fig. S1. Adsorption of OTC by different MnO2 catalysts under various pH conditions. Conditions: 

[catalysts] = 300 mg/L, [OTC] = 5 mg/L, pH = 4.0−11.0.

(c)

(a) (b)

Fig. S2. Pseudo-first-order rate constant versus solution pH for the Fenton-like oxidation of OTC with 

(a) α-MnO2, (b) β-MnO2 and (c) γ-MnO2. Conditions: [catalysts] = 300 mg/L, [H2O2] = 50 mM, [OTC] 

= 5 mg/L, pH = 4.0−11.0
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Fig. S3. The pH variations versus reaction time in OVs-rich α-MnO2/H2O2 system 

at initial pH levels of 4.0 to 11.0.

Fig. S4. Zeta potentials of MnO2 catalysts as a function of solution pH. 
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 Fig. S5. The effect of various anions on OTC degradation in α-MnO2/H2O2 system. 

Conditions: [H2O2] = 50 mM, [OTC] = 5 mg/L, [Cl−] = [NO3
−] = [SO4

2−] = [PO4
3−] = 

1−100 Mm, pH = 7.0.

Fig. S6. Solid EPR spectra of α-MnO2, α-MnO2-K-2h, α-MnO2-K-4h and α-MnO2-K-6h.
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Fig. S7. XPS spectra of Mn 2p (a) and O 1s (b) of α-MnO2 after the reaction.

Fig. S8. Degradation of DPBF in sole H2O2 system and adsorption of DPBF by various α-MnO2 

catalysts. Conditions: [catalysts] = 300 mg/L, [H2O2] = 50 mM, [DPBF] = 0.05 mmol/L, pH = 11.0.
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