Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

Supplementary file

for

Oriented generation of singlet oxygen in H₂O₂ activation for water

decontamination: Regulation of oxygen vacancy over a-MnO2 nanocatalyst

Xixi Chen^a, Yanjun Li^a, Wanyi Fu^{b, *}, Shuanghong Tian^c, Yulong Yang^a, Kai Yang^c, Xuanbo Xu^c,

Xihui Zhang^{a, *}

^a Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua

University, Shenzhen, 518055, China

^b State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University,

Nanjing, 210023, China

^c Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China

^d Guangdong Guangye Equipment Manufacturing Group Co. LTD, Guangzhou, 510275, China

* Corresponding authors. E-mail address: fu.wanyi@nju.edu.cn (W. Fu); xihuizh@tsinghua.edu.cn (X. Zhang)

Contents

Text S1. Quantitative detection of ¹O₂.

Text S2. Density functional theory (DFT) calculation.

 Table S1. Parameters of pharmaceutical wastewater.

Table S2. Detected emerging organic contaminants in the pharmaceutical wastewater.

Fig. S1. Adsorption of OTC by different MnO_2 catalysts under various pH conditions. Conditions: [catalysts] = 300 mg/L, [OTC] = 5 mg/L, pH = 4.0-11.0.

Fig. S2. Pseudo-first-order rate constant versus solution pH for the Fenton-like oxidation of OTC with (a) α -MnO₂, (b) β -MnO₂ and (c) γ -MnO₂. Conditions: [catalysts] = 300 mg/L, [H₂O₂] = 50 mM, [OTC] = 5 mg/L, pH = 4.0-11.0.

Fig. S3. The pH variations versus reaction time in OVs-rich α -MnO₂/H₂O₂ system at initial pH levels of 4.0 to 11.0.

Fig. S4. Zeta potentials of MnO₂ catalysts as a function of solution pH.

Fig. S5. The effect of various anions on OTC degradation in α -MnO₂/H₂O₂ system. Conditions: [H₂O₂]

= 50 mM, [OTC] = 5 mg/L, $[C1^{-}] = [NO_3^{-}] = [SO_4^{2-}] = [PO_4^{3-}] = 1-100 \text{ Mm}$, pH = 7.0.

Fig. S6. Solid EPR spectra of α -MnO₂, α -MnO₂-K-2h, α -MnO₂-K-4h and α -MnO₂-K-6h.

Fig. S6. Solid EPR spectra of α -MnO₂, α -MnO₂-K-2h, α -MnO₂-K-4h and α -MnO₂-K-6h.

Fig. S7. XPS spectra of Mn 2p (a) and O 1s (b) of α -MnO₂ after the reaction.

Fig. S8. Degradation of DPBF in sole H_2O_2 system and adsorption of DPBF by various α -MnO₂ catalysts. Conditions: [catalysts] = 300 mg/L, [H₂O₂] = 50 mM, [DPBF] = 0.05 mmol/L, pH = 11.0.

Text S1. Quantitative detection of ${}^{1}O_{2}$.

Since 1,3-diphenylisobenzofuran (DPBF) could react with ${}^{1}O_{2}$ in a molar ratio of 1:1, it was applied to quantitatively reflect the production amount of ${}^{1}O_{2}$ in the H₂O₂ activation system¹. Typically, 30 mg of different K⁺-modified α -MnO₂ catalysts was dispersed in 100 mL of solution with 0.05 mmol/L of DPBF for adsorption–desorption equilibrium. Then, 50 mM of H₂O₂ was added to initiate the reaction. The concentration of DPBF was measured by UV-2700 spectrophotometer (Shimadzu Corporation) at 411 nm. In the background experiments (**Fig. S8**), sole H₂O₂ system had no degradation ability to DPBF, and the K⁺-modified α -MnO₂ catalysts showed negligible adsorption performances for DPBF. Text S2. Density functional theory (DFT) calculation.

We have employed the first-principles² to perform all (DFT) calculations within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) formulation³. We have chosen the projected augmented wave (PAW) potentials⁴ to describe the ionic cores and take valence electrons into account using a plane wave basis set with a kinetic energy cutoff of 400eV. Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian smearing method and a width of 0.05 eV. The electronic energy was considered self-consistent when the energy change was smaller than 10⁻⁵ eV. A geometry optimization was considered convergent when the energy change was smaller than 0.03 eV Å⁻¹. In our structure, the U correction is used for Mn atoms. The vacuum spacing in a direction perpendicular to the plane of the structure is 18 Å for the MnO₂ surfaces. The Brillouin zone integration is performed using 3×3×1 Monkhorst-Pack k-point sampling for a structure. Finally, the adsorption energies (E_{ads}) were calculated as Eads= $E_{ad/sub} - E_{ad} - E_{sub}$, where $E_{ad/sub}$, E_{ad} , and E_{sub} are the total energies of the optimized adsorbate/substrate system, the adsorbate in the structure, and the clean substrate, respectively. The free energy was calculated using the equation:

$$G = E_{ads} + ZPE - TS$$

where G, Eads, ZPE and TS are the free energy, total energy from DFT calculations, zero point energy and entropic contributions, respectively.

Parameters	Pharmaceutical wastewater
pH	5.6
COD (mg/L)	66.4
TOC (mg/L)	18.7
UV_{254} (cm ⁻¹)	0.457
Turbidity	9.04
DO (mg/L)	7.38

 Table S1. Parameters of pharmaceutical wastewater.

Number	Emerging organic contaminants	Concentration (µg/L)
1	Oxytetracycline	0.81 ± 0.10
2	Lincomycin	1.73 ± 0.22
3	Tetracycline	1.95 ± 0.46
4	Bisphenol A	3.46 ± 0.12
5	Amoxicillin	4.19 ± 0.22
6	Naproxen	6.67 ± 1.29
7	Roxithromycin	11.09 ± 0.22
8	Erythromycin	18.88 ± 1.01
9	Ciprofloxacin	19.80 ± 0.10
10	Paracetamol	36.49 ± 3.75

 Table S2. Detected emerging organic contaminants in the pharmaceutical wastewater.

Fig. S1. Adsorption of OTC by different MnO₂ catalysts under various pH conditions. Conditions:

[catalysts] = 300 mg/L, [OTC] = 5 mg/L, pH = 4.0–11.0.

Fig. S2. Pseudo-first-order rate constant versus solution pH for the Fenton-like oxidation of OTC with (a) α -MnO₂, (b) β -MnO₂ and (c) γ -MnO₂. Conditions: [catalysts] = 300 mg/L, [H₂O₂] = 50 mM, [OTC]

Fig. S3. The pH variations versus reaction time in OVs-rich α -MnO₂/H₂O₂ system at initial pH levels of 4.0 to 11.0.

Fig. S4. Zeta potentials of MnO_2 catalysts as a function of solution pH.

Fig. S5. The effect of various anions on OTC degradation in α -MnO₂/H₂O₂ system.

Conditions: $[H_2O_2] = 50 \text{ mM}$, [OTC] = 5 mg/L, $[Cl^-] = [NO_3^-] = [SO_4^{2-}] = [PO_4^{3-}] = [PO_4^$

1-100 Mm, pH = 7.0.

Fig. S6. Solid EPR spectra of α -MnO₂, α -MnO₂-K-2h, α -MnO₂-K-4h and α -MnO₂-K-6h.

Fig. S7. XPS spectra of Mn 2p (a) and O 1s (b) of α -MnO₂ after the reaction.

Fig. S8. Degradation of DPBF in sole H_2O_2 system and adsorption of DPBF by various α -MnO₂ catalysts. Conditions: [catalysts] = 300 mg/L, [H₂O₂] = 50 mM, [DPBF] = 0.05 mmol/L, pH = 11.0.

References

- 1. S. Liu, C. Lai, X. Zhou, C. Zhang, L. Chen, H. Yan, L. Qin, D. Huang, H. Ye, W. Chen, L. Li, M. Zhang,
- L. Tang, F. Xu and D. Ma, Peroxydisulfate activation by sulfur-doped ordered mesoporous carbon: Insight into the intrinsic relationship between defects and ¹O₂ generation, *Water. Res.*, 2022, **221**, 118797.
- 2. G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set., *Comput. Mater. Sci.*, 1996, **6**, 15-50.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- 4. G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, *Phys. Rev. B*, **59**, 1758-1775.