Electronic Supplementary Information

## **Emerging investigator series: Kinetics of Diopside Reactivity for Carbon Mineralization in Mafic-Ultramafic Rocks**

Briana Aguila,<sup>a\*</sup> Landon Hardee,<sup>a</sup> H. Todd Schaef,<sup>b</sup> Siavash Zare,<sup>c</sup> Mohammad Javad Abdolhosseini Qomi,<sup>c</sup> Jarrod V. Crum,<sup>b</sup> Jade E. Holliman Jr.,<sup>d</sup> Elena Tajuelo Rodriguez,<sup>e</sup> Lawrence M. Anovitz,<sup>f</sup> Kevin M. Rosso,<sup>d</sup> and Quin R. S. Miller <sup>b\*</sup>

<sup>a</sup> Department of Chemistry, Francis Marion University, Florence, SC 29506, USA

<sup>b</sup> Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA

<sup>c</sup> Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, E4130 Engineering Gateway, University of California, Irvine, Irvine, CA 92697, USA

<sup>d</sup> Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA

<sup>e</sup>Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

<sup>f</sup>Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

<sup>\*</sup>Corresponding authors contact information: briana.aguila@fmarion.edu & quin.miller@pnnl.gov

| Table S1. Surface Me-O (Me=Ca,Mg) coordination numbers (CN) or | n the (110) surface of |
|----------------------------------------------------------------|------------------------|
| diopside.                                                      |                        |

| Case  | Surface Energy $\gamma$ (J/m <sup>2</sup> ) |
|-------|---------------------------------------------|
| (I)   | 1.1199                                      |
| (II)  | 0.6344                                      |
| (III) | 1.0814                                      |
| (IV)  | 1.7767                                      |

**Table S2.** Surface Me-O (Me=Ca,Mg) coordination numbers (CN) on the (110) surface of diopside.

|             | Case (II)      |              | Case (III)     |              |           |
|-------------|----------------|--------------|----------------|--------------|-----------|
| Surface ion | CN (unrelaxed) | CN (relaxed) | CN (unrelaxed) | CN (relaxed) | CN (bulk) |
| Ca          | 5              | 6            | 7              | 8            | 8         |
| Mg          | 5              | 6            | 4              | 6            | 6         |



Figure S1. Reference XRD pattern for Tajuelo Rodriguez et al.<sup>1</sup> diopside sample used in EXP I-IX. XRD scans of unreacted diopside collected using a Bruker D8 Discover TXS-HE A25, equipped with a rotating Cu anode (K $\alpha \lambda$  = 1.5418 Å), 0.3x3 mm cassette tungsten filament, Atlas goniometer, and a UMC 1516 motorized stage. A powder sample was mounted on the xyzy stage and positioned using a laser-video alignment system. The power settings of the generator were 45 kV and 120 mA and the source-sample distance is fixed at 425 mm. The EIGER2 R 500K detector was positioned at a 206.8 mm sample-detector distance. The upper 2D detector image was collected with the EIGER in max  $\gamma$  orientation via a continuous coupled  $2\theta/\theta$  scan from 5-110 °2 $\theta$ with a 0.02 step size and 0.25 time/step while the stage rotated ( $\phi$ ) at 360 °/min. The ~2 mm point source was generated using a Montel mirror optic and a 2 mm collimator. The lower diffractogram was collected with the detector in 1D max 2 $\theta$  mode orientation with a mounted 78x25 mm panoramic axial Soller (2.5°). Collection of individual XRD tracings from 5-110 °20 in coupled  $2\theta/\theta$  mode with 5251 steps at 3.5 seconds per step, X-Y grid scanning (4 mm amplitude at 2 mm/s and 2 mm amplitude at 4 mm/s, respectively), and continuous stage rotation ( $\phi$ ) at 360 °/min. On the source side, the TXS-HE line beam passed through a focusing Goebel mirror, a 0.6 mm divergence slit, a 2.5° axial Soller, and a 22 mm-long scatter guard.



Figure S2. Full 2D waterfall plot for EXP I (sample fell from holder at ~56 hours).



Figure S3. Thermogravimetric mass spectrometry measurements for post-reaction samples from EXP I-IX (m/z=18 & 44).



**Figure S4.** Mass-normalized mass spectrometry (m/z=44) results for (A) **EXP I-III**, (B) **EXP IV-VI**, (C) **EXP VII-IX**, and (D) the 35-400 °C range for **EXP VII-IX**.



**Figure S5.** Full 2D waterfall plots for (A) **EXP IV** (sample fell from holder at ~56 hours) and (B) **EXP V** (gap in data collection due to temporary computer outage with no effect on *in situ* XRD reactor temperature or pressure).



Figure S6. Overlap of initial and final *ex situ* patterns for EXP VI and EXP IX.



**Figure S7.** 2D waterfall plots for (A) **EXP VII**, (B) **EXP VIII**, and (C) **EXP IX** at 50 °C/90 bar. Panel A scan time was changed to 500 s after 72 hr.

## Supplemental Reference

1. E. Tajuelo Rodriguez, L. M. Anovitz, C. D. Clement, A. J. Rondinone and M. C. Cheshire, Facile emulsion mediated synthesis of phase-pure diopside nanoparticles, *Sci. Rep.*, 2018, **8**, 3099.