Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

Supplementary

Environmental safety of nanocellulose: an *in vivo* acute study with marine mussels *Mytilus galloprovincialis*

Tatiana Rusconi¹, Laura Riva², Carlo Punta², Montserrat Solè³, Ilaria Corsi^{1*}

¹Department of Physical, Earth and Environmental Sciences, University of Siena, Italy ²Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Milano, Italy ³Institut de Ciències del Mar, ICM-CSIC, Barcelona, Spain

*Corresponding author, Phone: +39 0577 232169; email: ilaria.corsi@unisi.it

Number of pages: 7 Number of tables: 4 Number of figures: 3

Additional description of methods

Carboxylesterase (CbE) activity was measured using 25 µL of undiluted gills and 25 µL of digestive gland sample (10-fold diluted) mixed with 200 µL of a solution containing ρ -nitrophenyl acetate (ρ NPA) or ρ -nitrophenyl butyrate (ρ NPA) as substrates at 1 mM final concentration in well. For both substrates reading was performed at 405 nm for 5 minutes (ϵ = 18,0 mM- 1*cm-1) according to the method of Hosokawa and Satoh ¹ adapted by Solé *et al.* ². Commercial recombinant human hCE1 (E0162) was used as positive control.

The activity of GST was analyzed according to the method of Habig *et al.*³. In each well 25 μ L of undiluted sample (gills) or 10-fold diluted (digestive gland) was added to 200 μ L of reaction mixture (containing in well: 1 mM GSH, 1 mM CDNB). Positive control of commercial GST (G6511) was used. Reading was performed 340 nm for 3 minutes. The activity was calculated by using ϵ = 9,6 mM⁻¹cm⁻¹.

CAT activity was measured according to Aebi *et al.*⁴. In each well, 10 μ L of diluted sample (4fold for gills and 10-fold for digestive gland) were added to 200 μ L of reaction mixture containing H₂O₂ (50 mM final well concentration). Commercial purified catalase (Sigma ref. SRE0041) was used as positive control. The reading was performed at 240 nm for 1 minute using $\epsilon = 40 \text{ M}^{-1*} \text{ cm}^{-1}$.

The activity of GR was measuring placing 20 μ L of undiluted sample and 200 μ L of a mixture containing 1 mM GSSG and 0.5 mM NADPH as final concentrations. Commercial GR (Sigma ref. G3664) was used as positive control. The reading was performed at 340 nm for 3 minutes according to the method of Calberg and Mannervik⁵ with ϵ = 6.22 mM^{-1*}cm⁻¹.

The GPX activity was measured using both cumene hydroperoxide (CHP) and H2O2 as substrates adapting the method of Günzler and Flohé⁶. For both gills and digestive gland tissues, in each well 10 μ L of undiluted sample were placed and then 200 μ L of reaction mixture (0.1 mM NADPH, 1.6 mM GSH and 1 U/mL GR as final concentrations) when using CHP as substrate or 200 μ L reaction mixture containing 0.125 mM NADPH, 2.075 mM GSH, 1 U/mL GR and 1.038 mM NaN₃) when using H2O2 as substrate. After 2 minutes of incubation, 30 μ L of CHP (final concentration 0.625 mM) or 30 μ L of H₂O₂ (0.2 mM) were added. An extract of fish liver (*Sparus aurata*) was used as positive control. For both substrates, the reading was done at 340 nm for 3 minutes. GPx activity was calculated with $\epsilon = 6.22$ mM^{-1*}cm⁻¹.

The total protein content in each tissue was done using the Bradford Method⁷. A 7-point bovine serum albumin (BSA) ($0.05 - 0.5 \text{ mg mL}^{-1}$) was used for protein content calculation. 10 μ L of samples and standards were mixed with 200 μ L of Bradford reagent BioRad and after 15 minutes agitation the absorbance was read at 595 nm and protein content expressed in mg mL⁻¹.

The lipid peroxidation levels (LPO) were measured in terms of malondialdehyde (MDA) equivalents using 200 μ L of undiluted samples mixed with 650 μ L of 1-methyl- 2-phenylindole in methanol:acetonitrile (1:3) and 150 μ L of 37 % HCl. Six point standards (0.1- 12.5 μ M) were made, with 1,1,3,3 tetramethoxypropane. Simultaneously, samples and standards were vortexed and then kept in a water bath at 45°C for 40 minutes. After that, the reaction was stopped in ice for 10 min, then centrifuged at 10,000 rpm for 10 minutes. A 200 ul aliquot of the supernatant of sample and standards was read at 586 nm.

Figure S1. XRD diffractograms of CNF and TOCNF, recorded for the calculation of the Cristallinity Index.

рН	NSW	ASW	NSW + CNF	ASW+ CNF	NSW + TOCNF	ASW + TOCNF
t0	8.2 ± 0.01	8.1 ± 0.06	8.1 ± 0.01	8.1 ± 0.03	8.1 ± 0.14	8.1 ± 0.05
t1	7.9 ± 0.06	8.1 ± 0.03	8.0 ± 0.05	8.1 ± 0.05	7.8 ± 0.05	8.2 ± 0.01
t2	7.9 ± 0.06	8.1 ± 0.04	7.7 ± 0.03	7.7 ± 0.04	7.8 ± 0.05	8.1 ± 0.05
t3	7.9 ± 0.06	8.1 ± 0.01	7.8 ± 0.04	7.9 ± 0.04	7.8 ± 0.02	8.0 ± 0.02
Salinity (‰)	NSW	ASW	NSW + CNF	ASW+ CNF	NSW + TOCNF	ASW + TOCNF
tO	41 ± 0.01	41 ± 0.00	41 ± 0.01	41 ± 0.01	41 ± 0.01	41 ± 0.01
t1	41± 0.00	39 ± 0.01	41 ± 0.01	39 ± 0.01	41 ± 0.01	39 ±0.01
t2	41± 0.00	40 ± 0.01	40 ± 0.01	39 ± 0.01	40 ± 0.01	39 ±0.01
t3	40 ± 0.01	39 ± 0.00	41 ± 0.01	39 ± 0.01	40 ± 0.01	41 ± 0.01

Table S1. pH and salinity values of CNF and TOCNF (1mg L^{-1}) water suspensions over time (t0= right after dispersion, t1= 24h, t2= 5 weeks t3=6 weeks. Data shown as mean values ± standard deviation (n=3 independent measurements).

Table S2. Neutral red retention time (NRRT) assay in hemocytes of mussels exposed to $1 \mu g L^{-1}$ and $1 m g L^{-1}$ of CNF and TOCNF. Data are shown as % of destabilized cells out of 100 scored.

Concentrations tested		1	ւց L ⁻¹	1mg L ⁻¹			
Tissues	Hemolymph						
Time		15 min	30 min	45 min	15 min	30 min	45 min
NRRT	Control	19 ± 6.24	35 ± 2.65	43 ± 2	33.7 ± 3.1	44 ± 2.6	63.7 ± 5
	CNF	30 ± 1	69 ± 5.29	90 ± 3	36.3 ± 3.5	60 ± 8.2	75 ± 3.6
	TOCNF	25 ± 3.61	76 ± 2.65	92 ± 3.61	39.7 ± 3.1	64.7 ± 4.9	61 ± 1

Table S3. P-glycoprotein efflux pump activity expressed as Arbitrary Units of Fluorescence (AUF) in gills of mussels exposed to 1 μ g L⁻¹ and 1 mg L⁻¹ of CNF and TOCNF and known inhibitor Verapamil (1 μ M).

Concentrations tested		1µg L ⁻¹	1mg L ⁻¹	
Tissues		Gill	Gill	
P-gp activity	Control	47698 ± 11457.92	22763 ± 4407.45	
	CNF	90053.4 ± 12791.09	75673 ± 16437.38	
	TOCNF	90864.4 ± 18386.12	67399 ± 8294.02	
	VERAPAMIL	89368.2 ± 14676.93	54381 ± 16299.19	

Table S4. Activity of ASCH-ChE in hemolymph, gills and digestive glands of mussels exposed to $1 \mu g L^{-1}$ and $1 mg L^{-1}$ of CNF and TOCNF. The activity is expressed as nmolmin⁻¹mgprotein⁻¹. The number of biological replicates was n=6 for gills, n= 4 for digestive gland and n= 6 for hemolymph

Concentration tested			1µgL ⁻¹		1mgL ⁻¹		
Tissues		Gill	Digestive gland	Hemolymph	Gill	Digestive gland	Hemolymph
ChE ASCh	Control	3.29 ± 1.6	1.778 ± 0.46	14.47 ± 1.94	3.89 ± 0.8	1.58 ± 0.8	18.95 ± 4.4
	CNF	2.99 ± 0.36	1.646 ± 0.513	12.79 ± 2.09	2.59 ± 0.21	1.54 ± 0.64	20.25 ± 3.23
	TOCNF	2.74 ± 1.3	1.492 ± 0.208	11.55 ± 2.67	2.98 ± 0.4	1.66 ± 0.53	13.45 ± 1.31

Figure S2. Fluorescence microscopy images of CNF and TOCNF labelled with RhB before and after incubation in NSW at 1mg mL⁻¹ (a) pre-incubation CNF (b) after 24h of incubation (c) pre-incubation TOCNF (d) after 24h of incubation.

TOCNF

Figure S3. Fluorescence microscopy images of dry TOCNF stained with RhB and TOCNF stained with RhB after 24h of incubation in NSW (1mg mL⁻¹). (a) TOCNF (b) TOCNF after 24h incubation.

References

- 1. M. Hosokawa, T. Satoh T., Measurement of carboxylesterase (CES) activities, Current Protocol in Toxicology, 2022 4 (4.7).
- M. Solé M; G. Rivera-Ingraham, R. Freitas, The use of carboxylesterases as biomarkers of pesticide exposure in bivalves: A methodological approach, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2018, 212, 18–24
- 3. H. Aebi, Catalase, Methods of Enzymatic Analysis (Second Edition), Academic Press, 1974, 673-684.
- 4. I.Carlberg, B. Mannervik, Glutathione reductase. Methods in Enzymology, 1985, 113, 484-490.
- 5. L. Flohé, W. A. Günzler, Assays of glutathione peroxidase. Methods in Enzymology, 1984, 105, 114-21.
- **6.** M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1997, 7(72), 48-54.