Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

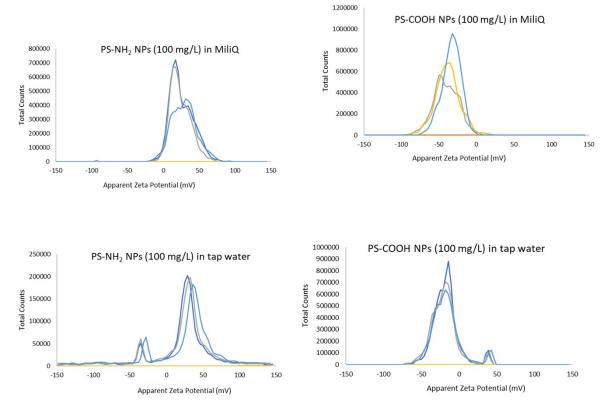
Supplementary Information

Metabolomics-based analysis in *Daphnia magna* after exposure to low environmental concentrations of polystyrene nanoparticles

Egle Kelpsiene^{a,b}, Tommy Cedervall^{a,b*}, and Anders Malmendal^c

^a Department of Biochemistry and Structural Biology, Lund University, P.O. Box

124, SE-221 00 Lund, Sweden


^b NanoLund, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden

^c Department of Science and Environment, Roskilde University, P.O. Box 260

DK-4000 Roskilde, Denmark

*Corresponding author:

tommy.cedervall@biochemistry.lu.se

Supplementary Fig. 1. Zeta potential measurements for PS NPs used in the study. PS NPs were measured either in MiliQ water or in tap water at concentrations of 100 mg/L,

Table S1. MANOVA comparisons of effect of presence, concentration, and type of nanoparticles. P values for comparisons of scores from principal component analysis (PCA) to test effect of presence, concentration, and type of NPs at different daphnid ages using MANOVA. Conc = effect of concentration for all NPs, Conc NH₂ = effect of concentration for PS-NH₂ NPs, Conc COOH = effect of concentration for PS-COOH NPs, Nanotype = effect of nanoparticle type, Nano = effect of nanoparticles, Nano 3.2 µg/L = effect of nanoparticles at 3.2 µg/L, Nano 32 µg/L = effect of nanoparticles at 32 µg/L, Nano 320 µg/L = effect of nanoparticles at 320 µg/L.

Age (days)	2	9	16	23	30	37	median
Conc	3.2×10 ⁻²	2.6×10 ⁻²	8.2×10 ⁻¹	2.8×10 ⁻¹	6.6×10 ⁻¹	5.8×10 ⁻³	1.6×10 ⁻¹
Conc NH ₂	8.8×10 ⁻²	1.5×10 ⁻²	1.7×10 ⁻¹	2.0×10 ⁻⁴	3.8×10 ⁻⁵	2.5×10 ⁻¹	5.2×10 ⁻²
Conc COOH	4.0×10 ⁻¹	2.1×10 ⁻³	1.4×10 ⁻⁵	3.1×10 ⁻²	1.0×10 ⁻¹	6.0×10 ⁻⁷	1.6×10 ⁻²
Nanotype	1.4×10 ⁻³	2.6×10 ⁻¹	4.4×10 ⁻¹	1.7×10 ⁻¹	4.9×10 ⁻⁴	1.5×10 ⁻¹	1.6×10 ⁻¹
Nano	1.1×10 ⁻⁸	2.1×10 ⁻⁴	6.8×10 ⁻³	3.6×10 ⁻⁶	5.3×10 ⁻⁸	1.3×10 ⁻⁷	1.9×10 ⁻⁶
Nano 3.2 µg/L	6.5×10 ⁻⁹	1.3×10 ⁻²	1.2×10 ⁻¹	7.3×10 ⁻⁴	2.1×10 ⁻⁵	1.1×10 ⁻⁷	3.8×10 ⁻⁴
Nano 32 µg/L	3.7×10 ^{−5}	2.3×10 ⁻⁵	9.0×10 ⁻³	3.8×10 ⁻⁶	4.8×10 ⁻²	7.2×10 ⁻³	3.6×10 ⁻³
Nano 320 µg/L	5.5×10 ⁻²	1.6×10 ⁻⁹	4.7×10 ⁻⁷	1.1×10 ⁻⁵	6.2×10 ⁻⁷	6.4×10 ⁻⁹	5.5×10 ⁻⁷

2