Supporting Information

Biomass-derived 3D hierarchical Zr-based tubular magnetomotors

with peroxidase-like property for selective colorimetric detection and

specific decontamination of glyphosate at neutral pH

Wenning Yang^{a,b}, Yangsai Lyu^c, Ziwei Lan^b, Jia Li^{b1}, Dickon H.L. Ng^d

^aShandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China

^bSchool of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China

^cDepartment of Mathematics and Statistics, Queen's University, Kingston, K7L 3N6, Canada

^dSchool of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, P. R.

China.

This file includes Videos S1-S4 and Fig. S1-S5.

Video S1. Motion of ZrO₂/MnFe₂O₄/FeZr-MOF micromotors in 3 wt.% H₂O₂ and 0.5 wt.% SDS.

Video S2. Motion of ZrO₂/MnFe₂O₄/FeZr-MOF micromotors in 5 wt.% H₂O₂ and 0.5 wt.% SDS.

Video S3. Motion of ZrO₂/MnFe₂O₄/FeZr-MOF micromotors in 10 wt.% H₂O₂ and 0.5 wt.% SDS.

Video S4. Magnetic guide motion of micromotors in 3 wt.% H₂O₂ and 0.5 wt.% SDS.

Fig. S1. XPS spectra of $ZrO_2/MnFe_2O_4/FeZr-MOF$ micromotors: survey spectrum (a) and high-resolution spectrum of Fe 2p (b), Mn 2p (c), Zr 3d (d), C 1s (e) and O 1s (f).

Fig. S2. The effect of H_2O_2 concentration on the amount of generated O_2 (a), and the effect of different catalysts on the amount of generated O_2 (b).

Fig. S3. UV-Vis spectra for the oxidation of three substrates catalyzed by $ZrO_2/MnFe_2O_4/FeZr-MOF$ without H_2O_2 (a), EPR spectrum of DMPO- $O_2^{\bullet^-}$ in air saturated solution (b), and the fluorescence spectra of different samples in a basic solution of TA (c).

Fig. S4. Influence of the micromotors concentration (a), TMB concentration (b), H_2O_2 concentration (c), pH value (d), temperature (e), and incubation time (f) on the oxidation of TMB by $ZrO_2/MnFe_2O_4/FeZr-MOF$ micromotors.

Fig. S5. Steady-state kinetic assay (a, c) and the corresponding double reciprocal plots (b, d) of $ZrO_2/MnFe_2O_4/FeZr-MOF$ micromotors.

Fig. S6. The absorbance variation of oxTMB at 652 nm for the mixture solution of glyphosate and interfering pesticides.

Fig. S7. The liner fitting curves of $ZrO_2/MnFe_2O_4/FeZr-MOF$ micromotors and non-motors based on pseudo-first-order kinetic model (a) and pseudo-second-order kinetic model (b).

Fig. S8. The liner fitting charts of $ZrO_2/MnFe_2O_4/FeZr-MOF$ micromotors and non-motors according to Langmuir adsorption isotherm model (a,b) and Freundlich model (c,d).

Table S1. Motion parameters of ZrO₂/MnFe₂O₄/FeZr-MOF in different concentrations of H₂O₂.

Table S2. Comparison of $K_{\rm m}$ and $V_{\rm max}$ of $ZrO_2/MnFe_2O_4/FeZr-MOF$ with other reported materials.

¹Corresponding authors at: School of Material Science and Engineering, University of Jinan, Jinan, 250022, China. *E-mail address:* mse_lij@ujn.edu.cn (Jia Li).

Materials

ZrOCl₂·8H₂O, FeCl₃·6H₂O, Fe(NO₃)₃·9H₂O,1,4-BDC-NH₂, dimethylformamide (DMF), NaOH, ethylene glycol (EG), acetic acid (HAc), terephthalic acid (TA), glyphosate, sodium dodecyl sulfonate (SDS, C₁₂H₂₅SO₃Na), and H₂O₂ (30 wt.%) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). MnCl₂·4H₂O, Zr(NO₃)₄·5H₂O were acquired from Shanghai Macklin Biochemical Co., Ltd (Shanghai, China). Isopropanol (IPA), NaN₃, *p*benzoquinone (BQ), 3,3',5,5'-tetramethylbenzidine (TMB), o-phenylenediamine (OPD), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) were supplied by Aladdin Reagent Co., Ltd. (Shanghai, China). *Cynanchum* seed hair was collected in the wild.

Characterizations

The microstructures of the as-prepared samples was characterized by field emission scanning electron microscopy (FESEM, FEI QUANTA FEG250, USA) and transmission electron microscopy (TEM, JEO-1400, Japan). The elemental composition of samples was identified by energy dispersive X-ray spectroscopy (EDS). The crystal structure of samples was evaluated using X-ray diffraction (XRD) with Cu K α radiation in the 2θ range of 5° to 80° at a scan speed of 10° ·min⁻¹. Fourier transform infrared (FT-IR) spectra of the prepared samples were tested by a Nicolet 670 FT-IR spectrometer (ThomasNicolet, USA). N₂ adsorption/desorption isotherms were measured by a MFA-140 Brunauer-Emmett-Teller (BET) surface analyzer. The fluorescence spectra were determined by an F-7000 fluorescence spectrophotometer (HITACHI, Japan) under the condition of a xenon lamp excitation light source and Ultraviolet-Visible (UV-Vis) absorbance spectra were collected by a UV-3600 plus spectrophotometer (Shimadzu, Japan). Motion videos of micromotors were captured by an optical microscope model (Microscope N-300M, China) with a DC2000 digital camera.

Experiments

The standard curve of the colorimetric measurements was established according to Equ.S1:

$$\Delta A = A_0 - A \tag{S1}$$

where ΔA is the absorbance variation of oxTMB at 652 nm, A_0 and A stand for the absorbance values without and with glyphosate, respectively.

The adsorbed mass per unit mass q_t (mg·g⁻¹) at the adsorption time t (min) was calculated according to the following equation:

$$q_t = \frac{(C_0 - C_t)V}{m} \tag{S2}$$

where C_0 (mg·L⁻¹) is the initial glyphosate concentration; C_t (mg·L⁻¹) is the glyphosate concentration at time *t* (min); *V*(L) is the volume of the solution, and *m* (g) is the mass of the micromotors.

The Michaelis-Menten constant was calculated using a Lineweaver-Burk plot (Equ. S3) (Yang et al., 2019):

$$\frac{1}{\nu} = \left(\frac{K_m}{V_{\text{max}}}\right) \left(\frac{1}{[S]}\right) + \left(\frac{1}{V_{\text{max}}}\right)$$
(S3)

where V is the initial reaction velocity, V_m is the maximal reaction velocity, [S] represents the substrate concentration, and K_m is the Michaelis-Menten constant, which is an indicator of catalyst affinity for its substrate. The smaller the value of K_m , the stronger the affinity between the enzyme and the substrate.

The pseudo-first-order kinetic model was drawn as Equ. S4 (Dong et al., 2019):

$$\ln\left(q_e - q_t\right) = \ln q_e - K_1 t \tag{S4}$$

where q_e and q_t (mg·g⁻¹) are the adsorption capacity (mg·g⁻¹) at equilibrium and at any time t (h), respectively, and K_1 (h⁻¹) is the adsorption rate constant of pseudo-first-order equation. The pseudo-second-order was expressed by the following equation Equ. S5 (Dong et al., 2019):

$$\frac{t}{q_t} = \frac{1}{K_2 {q_e}^2} + \frac{1}{q_e} t$$
(S5)

where K_2 is the rate constant of the pseudo-second-order model.

The Langmuir isotherm equation was expressed as Equ. S6 (Xun et al., 2015):

$$\frac{C_e}{q_e} = \frac{1}{q_{max}K_L} + \frac{C_e}{q_{max}}$$
(S6)

where $C_{\rm e}$ (mg·L⁻¹) is the equilibrium concentration, and $q_{\rm e}$ (mg·g⁻¹) is the equilibrium adsorption capacity, $q_{\rm max}$ (mg·g⁻¹) refers to maximum adsorption capacity. $K_{\rm L}$ represents the

Langmuir constant. The Freundlich isotherm was given by Equ. S7 (Xun et al., 2015):

$$lnq_e = lnK_F + \frac{1}{n}lnC_e \tag{S7}$$

where $K_{\rm F}$ and *n* are Freundlich constants related to adsorption capacity and adsorption intensity, respectively.

Fig. S1. XPS spectra of ZrO₂/MnFe₂O₄/FeZr-MOF micromotors: survey spectrum (a), and high-resolution spectrum of Fe 2p (b), Mn 2p (c), Zr 3d (d), C 1s (e), and O 1s (f).

Fig. S2. The effect of H₂O₂ concentration on the amount of generated O₂ (a), and the effect of different catalysts on the amount of generated O₂ (b). Error bars represent the standard deviations of three replicate measurements.

Fig. S3. UV-Vis spectra for the oxidation of three substrates catalyzed by ZrO₂/MnFe₂O₄/FeZr-MOF without H₂O₂ (a), EPR spectrum of DMPO-O₂• in air saturated solution (b), and the fluorescence spectra of different samples in a basic solution of TA (c).

Fig. S4. Influence of the micromotors concentration (a), TMB concentration (b), H₂O₂ concentration (c), pH value (d), temperature (e), and incubation time (f) on the oxidation of TMB by ZrO₂/MnFe₂O₄/FeZr-MOF micromotors. Error bars represent the standard deviations of three replicate measurements.

Fig. S5. Steady-state kinetic assay (a, c) and the corresponding double reciprocal plots (b, d) of ZrO₂/MnFe₂O₄/FeZr-MOF micromotors. Error bars represent the standard deviations of three replicate measurements.

Fig. S6. The absorbance variation of oxTMB at 652 nm for the mixture solution of glyphosate and interfering pesticides (1: glufosinate, 2: malathion, 3: acetochlor, 4: atrazine, 5: chlorpyrifos, 6: dimethoate, 7: acetamiprid, 8: carbendazim). Error bars represent the standard deviations of three replicate measurements.

Fig. S7. The liner fitting curves of ZrO₂/MnFe₂O₄/FeZr-MOF micromotors and non-motors based on pseudo-first-order kinetic model (a) and pseudo-second-order kinetic model (b).

Fig. S8. The liner fitting charts of ZrO₂/MnFe₂O₄/FeZr-MOF micromotors and non-motors according to Langmuir adsorption isotherm model (a, b) and Freundlich model (c, d).

H ₂ O ₂ (wt.%)	<i>L</i> (µm)	<i>a</i> (µm)	$U(\mu m \cdot s^{-1})$		
3	42.8	14.1	62.3 (1.46 body lengths/s)		
5	33.9	10.1	101.6 (3.00 body lengths/s)		
10	35.2	12.7	159.8 (4.54 body lengths/s)		

Table S1. Motion parameters of ZrO₂/MnFe₂O₄/FeZr-MOF in different concentrations of H₂O₂.

Table S2. Comparison of $K_{\rm m}$ and $V_{\rm max}$ of $ZrO_2/MnFe_2O_4/FeZr-MOF$ with other reported materials.

Catalyst		$K_{\rm m}({\rm mM})$		$V_{\rm max} (10^{-8}{ m M}\cdot{ m s}^{-1})$		Pof
		MB 1	H_2O_2	TMB	H_2O_2	KCI
HRP		434	3.7	10.0	8.71	Yan et al., 2007
Fe ₃ O ₄		285 (0.238	2.91	3.21	Das et al., 2020
[Cu(PDA)(DMF)]		169	28.6	2.19	3.16	Wang et al., 2019
NiCo ₂ O ₄ @MnO ₂		.31	\	127	\	Cui et al., 2022
Pt NP@UiO-66-NH ₂		127	36.5	1.36	4.15	Zhang et al., 2017
Fe ₃ O ₄ @MnO ₂ @ HKUST-		317 ().322	3.07	5.08	Li et al., 2023
1						
ZrO ₂ /MnFe ₂ O ₄ /FeZr-MOF		246 3	3.546	0.106	0.335	This work

References

- H. Li, H. Liu, J. Zhang, et al, Platinum nanoparticle encapsulated metal-organic frameworks for colorimetric measurement and facile removal of mercury(II), ACS Appl. Mater. Interfaces, 2017, 9, 40716-40725.
- H. Luo, Y. Han, K. Hu, et al, Synthesis of dual function Fe₃O₄@MnO₂@ HKUST-1 magnetic micromotors for efficient colorimetric detection and degradation of hydroquinone, *New J. Chem.*, 2023, **47**, 1094-1104.
- J. Wang, Y. Y. Hu, Q. Zhou, L. Z. Hu, W. S. Fu and Y. Wang, Peroxidase-like activity of metal-organic framework [Cu(PDA)(DMF)] and its application for colorimetric detection of dopamine, ACS Appl. Mater. Interfaces, 2019, 11, 44466-44473.
- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, *Nat. Nanotechnol.*, 2007, **2**, 577-583.
- P. K. Boruah, M. R. Das, Dual responsive magnetic Fe₃O₄-TiO₂/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium, *J. Hazard. Mater.*, 2020, **385**, 17.
- Q. Xun, N. Li, S. Yang, et al., A new magnetic nanocomposite for selective detection and removal of trace copper ions from water, *J. Mater. Chem. A* 3, 2015, **3**, 1265-1271.
- W. Yang, J. Li, M. Liu, et al., Bioinspired hierarchical CoAl-LDH/MFe₂O₄ (Ni,Zn,Co) as peroxidase mimics for colorimetric detection of glucose. *Appl. Clay Sci.*, 2019, **181**, 105238.
- Y. Dong, C. Yi, S. Yang, et al., Substrate-free graphene oxide-based micromotor for rapid adsorption of antibiotic, *Nanoscale*, 2019, **11**, 4562-4570.
- Y. Ma, M. Zhu, Q. He, M. Zhao and H. Cui, Photoenhanced Oxidase-peroxidase-like NiCo₂O₄@MnO₂ nanozymes for colorimetric detection of hydroquinone, *ACS Sustain. Chem. Eng.*, 2022, **10**, 5651-5658.