Waste tailing Particle Electrode enables enhance electrochemical degradation for sulfamethoxazole

Jiaqi Bu^a, Hongru Jiang^a, Tianhao Li^a, Chengyun Zhou^{b*}, Shian Zhong^{a*},

^aCollege of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.

^bCollege of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China

* Corresponding author, Email: zhongshiancsu@163.com; (S.A. Zhong);

zhouchengyun@hnu.edu.cn; (C.Y. Zhou);

Text S1. The Analytical Methodologies

The physical morphology and element composition of the plate surface was analyzed by (SEM; MIRA 3 LMU; Czech Republic), (EDS; Oxford X-Max20; Czech Republic), and Zeta potential (NanoPlus). X-ray polycrystalline powder diffractometer (XRD; Ultima IV; Japan) and X-ray photoelectron spectroscopy (XPS; ESCALAB250Xi; America) were used to analyze the crystal structure and valence composition of the metal on the surface of the electrode. The electrochemical workstation (EW; CHI660E; Shanghai, China) was used to analyze various electrocatalytic activities and chlorine evolution performance of the electrode. electron paramagnetic resonance (EPR) was used to confirm the generation of free radicals. UV spectrophotometer (UV-Vis, Cary 8454 UV-Vis, Shanghai, China), Total organic carbon analyzer (TOC, TOC-L, Shimadzu Corporation), and High-performance liquid chromatography (HPLC, LC-20A, Japan) were used to analyze the removal efficiency of SMZ. The degradation mechanism was analyzed by Triple quadrupole liquid chromatography-mass spectrometry (LC-MS, 1260-6460, Agilent). Toxicity Estimation Software Tool software was used to analyze the toxicology of water quality before and after degradation.

Fig. S1. SEM images of LZT-SO calcined at 350 °C (a), 450 °C (b), 550 °C (c), and 650 °C (d), respectively.

Table S1. The element proportion of LZT.			
Element	Weight%	Atomic%	
O K	50.34	69.62	
Mg K	5.27	4.79	
Al K	1.57	1.29	
Si K	5.52	4.35	
S K	9.61	6.63	

KK	0.57	0.32
Ca K	15.86	8.76
Ti K	0.06	0.03
Mn K	3.92	1.58
Fe K	6.21	2.46
Zn K	0.09	0.03
Sn L	0.36	0.07
Pb M	0.62	0.07
Totals	100.00	100.00

Fig. S3. The SEM and EDS of SO.
Table S2. The element proportion of SO

Element	Weight%	Atomic%
C K	7.44	11.83
O K	51.92	61.99
Na K	0.33	0.28
Al K	7.81	5.53
Si K	23.84	16.22
K K	8.19	4.00
Fe K	0.47	0.16
Totals	100.00	100.00

Element Weight% Atomic% C K 6.32 10.85 O K 53.54 63.35 0.31 Na K 0.37 Mg K 0.60 0.34 Al K 6.02 4.24 Si K 27.83 18.81 Sn K 0.17 0.11 ΚK 0.50 1.02 Ca K 0.14 0.07 Ti K 0.21 0.08 Mn K 0.59 0.22 Fe K 2.82 1.02 0.05 Zn K 0.12 Pb M 0.09 0.21 Totals 100.00 100.00

Fig. S4. The SEM and EDS of LZT-SO.
Table S3. The element proportion of LZT-SO

Fig. S5. Nitrogen adsorption and desorption isotherms of LZT-SO and SO

calcined at no temperature.

Table S4 Pore structure parameters of LZT-SO and SO.

Fig. S6. The XPS total spectrum of LZT-SO.

Fig. S7. Linear fittings of the pseudo-first-order model. **Text S4. The specific operating parameters of the electrochemical workstation**

The ITO electrode was ultrasonically cleaned in acetone, 1 mol L⁻¹ sodium hydroxide solution, and deionized water for 15 min, dried with nitrogen, and then dried at 120 °C for 2 h. Weigh 8 mg of particle electrode (LZT-SO) material, disperse it in 4 mL of ultrapure water, ultrasonic for 30 min, evenly drop 30 uL suspension on ITO electrode in a fixed area, and dry it at room temperature. Then, start the test.

Fig. S8. The zeta potentiometer (a) and nanoparticle size (b) of LZT-SO.

Fig. S9. The possible degradation mechanism of SMZ.

Fig. S10. UV absorption spectra of SMZ (a), SA (b), SAZ (c), SMA (d), 2,4dinitrophenol (e), and 4-aminobenzenesulfonic acid (f) before and after degradation (pH=6.02, pate spacing=4 cm, aeration flow rate=12 L/h, voltage=10 V, Na₂SO₄ dose=0.050 mmol, the dose of LZT-SO=35.02 g, [SMZ]₀=10.02 mg/L, the degradation time=70 min).

Fig. S12. The SEM and EDS of LZT-SO after three cycles.

Element	Weight%	Atomic%
СК	6.51	10.93
O K	53.87	63.43
Na K	0.39	0.32
Mg K	0.58	0.33
Al K	6.06	4.26
Si K	27.84	18.8
Sn K	0.15	0.1
K K	1.01	0.5
Ca K	0.15	0.07
Ti K	0.18	0.06
Mn K	0.5	0.17
Fe K	2.52	0.92
Zn K	0.09	0.04
Pb M	0.15	0.07
Totals	100.00	100.00

Table S5. The element proportion of waste coal cinder after three cycles

Table S6. The mass loss of LZT-SO after three cycles

					5		
Cycles			М	ass loss (%)			
		0			0		
		1			1.56		
		2			3.21		
_		3			5.46		
	Tab	le S7 Comparison of	different method	ds for rer	noval antibac	terial.	
	Method	Contaminants	Concentratio n	Time (h)	Removal efficiency (%)	рН	Ref
1	Adsorption	Sulfanilamide	10 mg/L	4	86.77	6	(Sun et al., 2022)
Pł	notocatalytic	Sulfamethoxazole	20 mg/L	2/3	89.02	7.5	(Paragas et

						al., 2018)
Sonocatalytic	Sulfamethoxazole	$10 \ \mu M \ /L$	1	95	7	(Al-
						Hamadani
						et al.,
						2016)
Ozone	Sulfamethoxazole	1000 µg/L	0.5	96-98	3.5	(Garoma
Oxidative						et al.,
						2010)
Fenton	Sulfamethoxazole	20 mg/L	2/3	87.8	6.5	(Liu et al.,
Oxidative						2021)
Peroxide	Sulfamethoxazole	10 mg/Kg	36	95.8	6	(Amina et
activation						al., 2022)
Biological	Sulfamethoxazole	52 µg/L	168	$47.86\pm$	8.4	(Rodrigue
oxidation				2.35		s et al.,
						2020)
Three-	Sulfamethoxazole	10 mg/L	1	100.00	6.0	This work
dimensional					2	
electrocatalytic						
oxidation						

- Amina, Abbas, Q., Shakoor, A., Naushad, M., Yousaf, B., 2022. In-situ oxidative degradation of sulfamethoxazole by calcium peroxide/persulfate dual oxidant system in water and soil. Process. Saf. Environ. 164, 696-705. https://doi.org/10.1016/j.psep.2022.06.052.
- Al-Hamadani, Y.A.J., Chu, K.H., Flora, J.R.V., Kim, D.H., Jang, M., Sohn, J., Joo, W., Yoon, Y., 2016. Sonocatalytical degradation enhancement for ibuprofen and sulfamethoxazole in the presence of glass beads and single-walled carbon nanotubes. 32, 440-448. https://doi.org/10.1016/j.ultsonch.2016.03.030.
- Garoma, T., Umamaheshwar, S.K., Mumper, A., 2010. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation.
 Chemosphere.
 79, 814-820.
 https://doi.org/10.1016/j.chemosphere.2010.02.060.
- Liu, Y., Yang, Z., Wang, J.L., 2021. Fenton-like degradation of sulfamethoxazole in Cu⁰/Zn⁰-air system over a broad pH range: Performance, kinetics and mechanism. Chem. Eng. J. 403, 126320. https://doi.org/10.1016/j.cej.2020.126320.
- Rodrigues, D.A.D., da Cunha, C.C.R.F., Freitas, M.G., de Barros, A.L.C., Castro, P.B.N.E., Pereira, A.R., Silva, S.D., Santiago, A.D., Afonso, R.J.D.F., 2020.
 Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents. Sci.Total. Environ. 749, 141441. https://doi.org/10.1016/j.scitotenv.2020.141441.
- Sun, Y., Bian, J.M., Zhu, Q., 2022. Sulfamethoxazole removal of adsorption by carbon – Doped boron nitride in water. J. Mol. Liq. 349, 118216. https://doi.org/10.1016/j.molliq.2021.118216.
- Paragas, L.K.B., de Luna, M.D.G., Doong, R.A., 2018. Rapid removal of sulfamethoxazole from simulated water matrix by visible-light responsive iodine

Factor	Parameter	SMZ removal	Power
		efficiency	consumption
		(%)	(kW·h)
pН	4.01	90.11	1.70
	6.02	100.00	1.51
	7.02	96.02	1.55
	7.99	98.01	1.61
	9.98	84.02	1.74
Na_2SO_4	0.00	9.23	0.11
dosage	0.25	89.11	0.84
(mmol)	0.40	93.52	1.28
	0.50	100.00	1.51
	0.60	100.00	1.68
	0.70	100.00	1.82
Voltage (V)	6	94.01	0.96
	8	98.01	1.39
	10	100.00	1.51
	12	100.00	1.70
	14	100.00	1.86
Aeration	0	83.91	1.61
flow rate	8	95.71	1.58
(L/h)	10	97.71	1.59
	12	100.00	1.51
	14	92.40	1.42
Groove	4	100.00	1.51
spacing (cm)	5	95.02	1.22
	6	91.12	0.81
	Marthan	mul	
(.u.)	L.	Δ () min
, (a.		0	min
sity		0	
ten			
In			

and potassium co-doped graphitic carbon nitride photocatalysts. Chemosphere. 210, 1099-1107. https://doi.org/10.1016/j.chemosphere.2018.07.109. **Table S8** Degradation process parameters and cost.

Retention time (min)

20 25 30

Fig. S14. The mass spectra of SMZ before (a) and after degradation (b-f).

Fig. S15. The TOC removal efficiency of SMZ before and after degradation (pH=6.02,

pate spacing=4 cm, aeration flow rate=12 L/h, voltage=10 V, Na₂SO₄ dose=0.050

mmol, the dose of LZT-SO=35.02 g, [SMZ]₀=10.02 mg/L).

Table S9. The structural information of the possible intermediate products.

P1
$$H_3C$$
 O H_3C H_3C

P5
$$H_2N \longrightarrow \bigcup_{i=0}^{O} H_2N$$
 158.02

$$O_2N$$
 NH_2 138.1

$$\mathbf{H}_{2}\mathbf{N} \longrightarrow \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{S} \\ \mathbf{H} \\ \mathbf{O} \end{bmatrix} = \mathbf{N}\mathbf{H}_{2}$$
 172.2

H₃C NH₂ N N

CH₃

C

-OH

NH₂

P10

P6

P7

P8

P9

99.12 140.01

269.1