Supporting Information

Optimization of process variables for the concurrent removal of aliphatic and aromatic volatile organic compounds over copper impregnated titanium dioxide photocatalyst

Swati Verma, Kumar Vikrant, Ki-Hyun Kim*

Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea

1. Reagents and chemicals

TiO₂ (P25) powder (particle size = 21 nm) and copper (II) nitrate hemi(pentahydrate) were procured from Sigma Aldrich (United States of America (USA)). 5,5-Dimethyl-1-pyrroline N-Oxide (DMPO) spin trapper was purchased from Tokyo Chemical Industry (TCI) Co. Ltd. Analytical grade reagents of target VOCs were purchased from Sigma-Aldrich (USA) and were used without further purification. Gas cylinders of air containing 21% O₂ and balance N₂ (99.999%), hydrogen (H₂, 99.999%), and nitrogen (N₂, 99.999%) were procured from Union Gas Co., Ltd. (Yongin, Republic of Korea).

Order	Full name	Short name	Molecular weight (g·mol ⁻¹)	Chemical formula	Density (g·cm ⁻³)	Boiling point (°C)	Chemical structure
(a) Aliphatic VOCs							
1	Propionaldehyde	PA	58.1	C ₃ H ₆ O	0.81	49	0
2	Butyraldehyde	BA	72.1	C ₄ H ₈ O	0.81	74.8	
3	Isovaleraldehyde	IA	86	C5H10O	0.81	92	
4	Valeraldehyde	VA	86.1	$C_5H_{10}O$	0.81	103	
5	Methyl isobutyl ketone	MIBK	100.2	C ₆ H ₁₂ O	0.80	116	
6	Acrylonitrile	AN	53.1	C ₃ H ₃ N	0.81	77	N
7	Isoprene	IP	68.1	C_5H_8	0.68	34.1	
(b) Ar	omatic VOCs						
8	Benzene	В	78.1	C ₆ H ₆	0.81	80.1	
9	Toluene	Т	92.1	C_7H_8	0.87	110.6	
10	m-Xylene	Х	106	C ₈ H ₁₀	0.86	139	
11	Styrene	S	104	C_8H_8	0.91	145	

Table S1. Information on the target VOCs.

Order	VOC	Purity (%)	Density (g/mL)	Volume of each VOC in the LPS (µL)	Dilution factor	Conc. (%)	Conc. (ng/µL)	Gaseous working standard (GWS) concentration (2.5 µL LPS in a 50 L bag)
1	PA	97.0	0.81	100.0	0.066	6.4	52,115	1.00
2	BA	99.0	0.81	122.4	0.081	8.0	64,701	1.00
3	IA	97.0	0.81	148.4	0.098	9.5	77,338	1.01
4	VA	97.0	0.81	149.2	0.099	9.6	77,287	1.00
5	MIBK	99.5	0.80	169.8	0.113	11.2	89,873	1.00
6	IP	99.0	0.68	136.8	0.091	9.0	61,175	1.01
7	В	99.9	0.87	121.0	0.080	8.0	70,090	1.00
8	AN	99.0	0.81	89.6	0.059	5.9	47,658	1.01
9	Т	99.8	0.87	144.4	0.096	9.6	82,677	1.00
10	Х	99.0	0.86	168.8	0.112	11.1	95,326	1.01
11	S	99.0	0.91	157.2	0.104	10.3	93,524	1.01

Table S2. Method for the preparation of the liquid and gaseous (1 ppm each) primary standards mixture of 11 volatile organic compounds (VOCs).

Table S3. Estimation of degradation rate constants of 11 VOCs over TiO₂ and Cu@TiO₂ photocatalysts.

Order	VOC	Degradation rate constant (k = min ⁻¹)		
		TiO ₂	Cu@TiO ₂	
Aliphatic VOCs				
1	PA	$ND^{\#}$	$ND^{\#}$	
2	BA	$ND^{\#}$	6.30E-03	
3	IA	3.53E-04	2.01E-02	
4	VA	7.23E-04	2.08E-02	
5	MIBK	3.53E-03	1.31E-02	
6	AN	1.38E-04	1.70E-03	
7	IP	2.23E-04	1.80E-03	
Aromatic VOCs				
8	В	9.00E-05	6.00E-04	
9	Т	2.06E-04	1.60E-03	
10	Х	5.83E-04	4.10E-03	
11	S	1.68E-03	8.90E-03	

ND[#] = not determined

Order	By-product	Retention time (min)	Fragments m/z	Similarity index (%)
1.	Acetone	4.17	58, 43	98
2.	Acetic acid	23.62	60, 45, 43	97
3.	Hexanediol	24.04	82, 71, 67	96
4.	2-Ethylhexanol	24.79	83, 70, 57, 43	97
5.	Propionic acid	26.06	74, 57, 45	96
6.	Benzaldehyde	26.22	106, 77, 51	95
7.	Butanoic acid	28.02	87, 60, 43	97
8.	Pentanoic acid	30.28	73, 60, 55, 41	96
9.	Phenol	35.61	94, 66, 39	96

Table S4. Details on the by-products obtained and corresponding fragments identified during the photocatalytic VOC degradation reaction.

Fig. S1. Surface characterization of TiO₂, Cu@TiO₂, and CuO: (a) N₂ adsorption-desorption isotherms and (b) pore size distributions.

Fig. S2. Elemental maps showing distribution of Ti, O, and Cu elements in $Cu@TiO_2$.

Fig. S3. Transmission electron microscope (TEM) image of titanium dioxide (TiO₂): (a) TEM image. (b) Magnified TEM image along with the corresponding selected area electron diffraction (SAED) pattern in the inset.

Fig. S4. XPS spectra of TiO₂: (a) full survey scan, (b) deconvoluted Ti 2p spectrum, and (c) deconvoluted O 1s spectrum.

Fig. S5. XPS spectra of CuO: (a) full survey scan, (b) deconvoluted Cu 2p spectrum, and (c) deconvoluted O 1s spectrum.

Fig. S6. Optical characterization of TiO₂ and Cu@TiO₂ by UV-Vis DRS and photoluminescence spectroscopy: (a) Tauc plot and (b) PL emission spectra.

Fig. S7. Electrochemical characterization of TiO₂ and Cu@TiO₂: (a) electrochemical impedance and (b) photocurrent density measurements.

Fig S8. Reusability and recyclability of Cu@TiO₂ for photocatalytic VOCs removal.

Fig. S9 XPS spectra of spent Cu@TiO₂ photocatalyst: (a) full survey scan, (b) deconvoluted Ti 2p spectrum, (c) deconvoluted Cu 2p spectrum, (d) deconvoluted O 1s spectrum, and (e) deconvoluted C1s spectrum.

Fig. S10. Schematics for the photocatalytic degradation pathways proposed for diverse aliphatic and aromatic VOCs based on identified intermediates. The experimentally identified by-products are shown in red.