Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

1 Supporting Information

2	Cerium oxide nanomaterials improve cucumber flowering, fruit yield and
3	quality: the rhizosphere effect
4	Yan Feng ^{ab} , Chuanxi Wang ^{ab} , Feiran Chen ^{ab} , Xuesong Cao ^{ab} , Jing Wang ^{ab} , Le Yue* ^{ab} ,
5	Zhenyu Wang ^{ab}
6	
7	^a Institute of Environmental Processes and Pollution Control and School of
8	Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
9	^b Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction
10	Technology, Wuxi 214122, China.
11	
12	*Corresponding author:
13	Tel.: +86 0510 85911911
14	E-mail address: leyue@jiangnan.edu.cn (Dr. Le Yue)

16 Text S1 Determination of IAA and tryptophan

17 The contents of IAA in soil and plant samples were determined by HPLC-MS/MS 18 using the previous method.¹ The fresh samples were homogenized in liquid nitrogen 19 and extracted with ethyl acetate (containing 10 μ g L⁻¹ butylated hydroxytoluene). The 20 mixture was ultrasonicated in an ice bath for 15 min and centrifuged at 12000 rpm at 4 21 °C for 15 min. The supernatant was vacuum freeze-dried at room temperature and then 22 re-suspended in 70% ethanol (V/V) and 10 μ L was used to determine IAA.

23 HPLC condition details:

Five μL of extraction was injected in HPLC with a T3 column. Mobile phase
parameters were as follows: A, 0.01% formic acid/water (v/v); B, 0.01% formic
acid/acetonitrile (v/v). The elution gradient was as follows: 0 min, 5% B; 1.5 min, 5%
B; 9 min, 70% B; 10 min 70% B; 10.1 min, 5% B; 15 min, 5% B at the flow rate of
0.35 mL min⁻¹.

29 MS condition details:

30 PRM (Parallel Reaction Monitoring) was used for collection. The MS^2 resolution 31 was set to 17500. The isolation window and collision energy were 3.0 m z^{-1} and nce: 32 10. IAA was detected in negative ion mode.

33

For the determination of tryptophan, fresh samples were homogenized in liquid nitrogen and extracted with 80% methanol. The mixture was ultrasonicated in an ice bath for 5 min and centrifuged at 14000 rpm at 4 °C for 15 min. The supernatant was used to determine tryptophan.

38 HPLC condition details:

Five μL of supernatant was injected in HPLC with a T3 column. Mobile phase
parameters were as follows: A, 20 mM ammonium formate (in water); B, 20 mM
ammonium formate (in 90% acetonitrile, v/v). The elution gradient was as follows: 0
min, 95% B; 1 min, 95% B; 15 min, 65% B; 17 min 65% B; 18 min, 95% B at the flow
rate of 0.25 mL min⁻¹.

44 MS condition details:

45 PRM was used for collection. The MS^2 resolution was set to 17500. The isolation

- 46 window and collision energy were 3.0 m z^{-1} and nce: 10, 20 and 40 respectively.
- 47 Tryptophan was detected in positive ion mode.

50 Text S2 Effects of CeO_2 NMs on the yield of cucumber

CeO₂ NMs had a positive effect on cucumber growth (Fig. S2). The application of 51 1, 10 and 50 mg kg⁻¹ CeO₂ NMs significantly increased plant height by 11.0%, 14.5% 52 and 4.8% over control at maturity stage, respectively (Fig. S2A). Compared with the 53 control, 10 and 50 mg kg⁻¹ CeO₂ NMs significantly enhanced the shoot fresh weight by 54 29.1% and 24.8%, and the root fresh weight by 33.7% and 39.9%, respectively (Fig. 55 S2C, D). Roots are important organs for plants to absorb water and nutrients.² The 56 stimulated hormones may be responsible for increased growth by NMs.³ Finally, 10 57 and 50 mg kg⁻¹ CeO₂ NMs increased the fresh weight of cucumber fruits by 28.5% and 58 13.6% (Fig. S2B). The diameter of the cucumber cross section was also induced by 59 CeO₂ NMs and reached maximum at 10 mg kg⁻¹ (Fig. S2E). Therefore, 10 mg kg⁻¹ CeO₂ 60 NMs promoted the growth of cucumber most and was selected for further investigation. 61 62

Fig. S1 Characterization of CeO₂ NMs: TEM image (A) and XRD (B).

67 Fig. S2 Cucumber growth as affected by 0, 1, 10 and 50 mg kg⁻¹ CeO₂ NMs: plant 68 height (A), total fresh weight of fruit (B), shoot (C) and root (D), cross section of 69 cucumber fruit (E). The error bar with different letters were significantly different 70 corresponding to the standard error of mean value (p < 0.05).

Fig. S3 Cucumber growth as affected by 10 mg kg⁻¹ CeO₂ NMs: fresh weight of 73 cucumber root and shoot at seedling stage (A), element content in cucumber root and 74 leaf during flowering (B), relative expressions of aquaporin genes (C) and content of 75 pigment (D) during flowering after exposed to 10 mg kg⁻¹ CeO₂ NMs. 76

Fig. S4 Microbial tryptophan biosynthesis in rhizosphere soil (A) and total nitrogen content of the apical meristem (B) at seedling stage after exposed to 10 mg kg⁻¹ CeO₂ NMs.

	$100 \text{ mg } \text{L}^{-1} \text{ CeO}_2$ 20.97 ± 0.25 $368.51.03 \pm 13.64$
$ng L^{-1} CeO_2 \qquad 20.97 \pm 0.25 \qquad 368.51.03 \pm 13.64$	

90 Table S1 Zeta potential and hydrodynamic diameter of CeO_2 NMs in deionized water.

Table S2 Primer sets list for this study

Gene	Primer	Sequence (5' to 3')	
Actin	Forward Reverse	GTTCTTACTAATGCTGGTGGTG TTTACTCACAGTCCCTTGGTCTC	
PIP1;1	Forward Reverse	TCAAGTCGTGATTAGAGCCATTCC CAATAATATAATAAGCATTTTGCATAGAGAGAG	
PIP1;2	Forward Reverse	CATTATTTACAACCACGACGAAGCA GGATTGAAGAAGCATCATGGATTTAGA	
PIP1;3	Forward Reverse	CAAATCATCATCAGAGCCATTCCAT AGAAGAGAACACACGCATATTAAGAAAGA	
PIN1	Forward Reverse	TCACCTACAGGGTCTAAAAATG TCCAAACAAACATGTGTAAATC	
PIN7	Forward Reverse	TCAGAAACTTATCGTCCTCGTC GGCAGAGTGGACAGAGAAAACA	
YUC2	Forward Reverse	GCAAGGCAAAAGACTTCACGATCC GCGACCGCTAAGCCCG	
YUC4	Forward Reverse	GGGTTGTACACCGTCGGG ACTCGCCATTGCTCGGC	
YUC6	Forward Reverse	ACAGAGAAGATGAACGGCGG CGCCGCAGCTAATCCTGAG	
CsSUT4	Forward Reverse	GGTTTCTGGGGTTCTGAGCA CTTAGCAATAGTTTTCCCACAGGTT	
CsHT2	Forward Reverse	CCGAATCTTCTTTGATGTCCGC TTTCCCCTGCTACAATCGCCTG	
CsHT3	Forward Reverse	GCGTCGGCTTCGCAAATCAG ATTAGGGGTGCCACGGATTCG	
CsHT4	Forward Reverse	CGGCGGCGTCTTTGTATTC GCCTTTTGATAGACTCTTTCCTTG	
CsSWEET1	Forward Reverse	AACTGCCTTATTTGCCTATGGTATG GCGAACATTGATACGAGAGAAGC	
CsSWEET2	Forward Reverse	AACTGCCTTATTTGCCTATGGTATG GCGAACATTGATACGAGAGAAGC	
CsSWEET5a	Forward Reverse	ACGCTATTCTCAAGTTCGATCCTAA CATTATCTGTCATTTGCACCTCTGG	
CsSWEET7b	Forward Reverse	ACGCCACCTTTTACAAATCAACTC CCGTCGTGTCAGAAATAGGGG	
CsSWEET12c	Forward Reverse	ATAGCCATAGCAAAGGAAATGAAGC TGACTTCCAAGGTTTTGTGGTTATG	
CsSWEET17a	Forward Reverse	GTTTTCCTGATTTACGCACCTTC CAATACGCTTTTCCCCTTCC	
CsSWEET17c	Forward Reverse	ACTGTCAATGGCGTTGGTGTT CCTTCTTTTGTTTGGGAGCG	
GMP1	Forward Reverse	ATGATCTTGCACCAGATAGAAGC AGCTGTTCCAAGTGGTTCTGTC	
GMP2	Forward Reverse	GCAGAGCTAACTTACGGCGTG TGAACACTTCAAAGACATCCCTG	
GMP3	Forward Reverse	ATGGAAGACAGTCCGTCACATATC CCGCATAGTGAAGTAGTTCGTTTG	
GLDH	Forward Reverse	CTCTTGGGTCGGAATTATCATG GCCTTGTTGTATCGTCAACAG	
MIOX1	Forward Reverse	TGTTGTAGGAGATACACACCCTG CTCTTTGGCCACCAAATACATATAG	
MIOX2	Forward Reverse	CGTCCATCACAAGTACTTCAAAG ACGATAAATAAGCCGGCATC	

96 Table S3 Differentially expressed metabolites of cucumber leaves in CK and upon

Metabolites СК NMs 122595108.9 Sucrose 44861893.0 Fructose 41041325.4 211633351.5 Mannose 187760144.5 491627641.2 Malic acid 1308514172.0 1707071355.0 Citric acid 437158803.9 601262011.6cis Aconitic 224799513.5 353303396.2

CeO₂ NMs

99

98

101 Table S4 Differentially expressed metabolites of cucumber soil in CK and upon CeO₂

102

NMs

	Metabolites	СК	NMs
	Phenylalanine	9297222.0	16282941.5
	Tyrosine	817655.3	1417391.1
	Hesperetin	58603.7	61277.9
	Leucine	1680275.5	3862101.2
	Valine	23680566.2	43694962.5
	Tryptophan	4140608.4	5397665.3
	Indole	15776054.4	19353380.0
	Eleostearic acid	832939.7	1114759.1
	Kaempferol	63310.8	71884.2
	Glutamine	1061219.0	1717273.5
	Citrulline	18160368.6	22363332.3
Without plants	Malic acid	2447380.9	2772874.9
	Mannose	4528575.0	7279570.4
	Trehalose	6829417.7	7243418.4
	Pyruvic acid	5504414.9	10311574.1
	Salicylic acid	12871778.0	16178998.2
	Sucrose	6513952.8	7717325.2
	Gluconic acid	381021.8	235159.8
	Ferulic acid	16366865.1	12832443.9
	Mannose-6-phosphate	1358064.9	1010587.4
	Glutathione	635839.9	557871.7
	Arginine	2765879.8	2312203.3
	Citraconic acid	1100150.8	757475.7
	Phenylalanine	18248943.0	72083392.1
	Tyrosine	2543448.2	16662713.3
	Leucine	40109829.7	181412837.0
	Valine	34230954.4	75771241.6
	Tryptophan	14048262.4	54538672.3
	Indole	16061509.6	28039627.6
	Sucrose	10658908.9	20882879.5
	Hesperetin	61088.7	65282.0
D1 1	Eleostearic acid	986436.2	1844934.9
Rhizosphere	Pyroglutamic acid	4577335.8	4847866.2
	Indole-3-acrylic acid	19033059.0	59762698.8
	Glutamic acid	5889488.2	45873344.4
	Coumaric acid	2206059.5	2616040.1
	Histidine	11338588.2	14213176.3
	Proline	336789.1	218983.1
	Ferulic acid	2602197.9	2328897.3
	Citrulline	25073868.1	16992143.8
	Glutathione	583404.0	499096.0

104 Table S5 Differentially expressed metabolites of cucumber flower in CK and upon

Metabolites	СК	NMs
Tryptophan	11237932349.0	13446138837.0
Indole pyruvate	39738928.2	46616100.3
Serine	10546831392.0	16255619869.0
Tyrosine	89162951.8	582902805.4
Phenylalanine	1076839816.0	1549640162.0
Pyruvate	18251668508.0	26194850912.0
Alanine	212589024.2	291205275.9
Leucine	9403789976.0	12610733470.0
Valine	2660045048.0	3581833990.0
Threonine	159156843.7	233438010.1
Aspartic acid	81271227.7	109949106.4
Asparagine	357231992.8	873546946.8
Malic acid	18158195681.0	25942348391.0
Fumaric acid	843821032.6	1318024667.0
Citric acid	801840903.0	933087315.1
Glutamine	1252557818.0	1817246847.0
Citrulline	5237113115.0	6015491998.0
Proline	3325001224.0	8318785030.0
Arginine	334899114.9	578373136.8
Apigenin	14032378.8	17545129.3
Hesperetin	87838324.4	128126725.9
Quercetin	16490119.0	19861960.2
Rutin	4999470.5	7457221.3

CeO₂ NMs

109 References

- Z. Wang, X. Le, X. Cao, C. Wang, F. Chen, J. Wang, Y. Feng, L. Yue and B. Xing, Triiron tetrairon
- 112 phosphate (Fe7(PO4)6) nanomaterials enhanced flavonoid accumulation in tomato fruits, Nanomaterials
- 113 (Basel)., 2022, **12**, 1341.
- 114 2. Y. Dai, F. Chen, L. Yue, T. Li and B. Xing, Uptake, transport, and transformation of CeO₂
- 115 nanoparticles by strawberry and their impact on rhizosphere bacterial community, ACS Sustainable
- 116 Chemistry & Engineering., 2020, 8, 12.
- 117 3. M. Rui, C. Ma, Y. Hao, J. Guo, Y. Rui, X. Tang, Q. Zhao, X. Fan, Z. Zhang, T. Hou and S. Zhu,
- 118 Iron oxide nanoparticles as a potential iron fertilizer for peanut (*Arachis hypogaea*), *Front Plant Sci.*,
 119 2016, 7, 815.