Enhanced oxidative and adsorptive removal of arsenite by heterogeneous interfacial reaction of sulfidated nanoscale zerovalent iron

Jing Liu^{a#}, Siming Yang^{a#}, Airong Liu^{a*}, Qing Huang, Wei-xian Zhang^a, Shizhong Wang^b, Qianfen Xiao^a

^aState Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China ^bSchool of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China

[#]These two authors contributed equally: Jing Liu, Siming Yang.

^{*}To whom correspondence should be addressed. Tel: +86-21-6598-2684; Fax: +86-21-6598-3689 E-mail address: liuairong@tongji.edu.cn (Airong Liu)

Materials –	Pseudo-first-order			Pseudo-second-order		
	k ₁ (min ⁻¹)	q _e (mg/g)	R ²	$k_2(g \cdot mg^{-1} \cdot min^{-1})$	q _e (mg/g)	R ²
nZVI	0.06091	5.804015	0.8741	0.020048	16.90617	0.99911
S-nZVI ^{0.01}	0.07425	1.312272	0.67052	0.108089	17.2117	0.99993
S-nZVI ^{0.1}	0.05308	0.579112	0.54526	0.280152	19.28268	0.99999
S-nZVI ^{0.5}	0.04738	2.654855	0.65549	0.060466	17.18508	0.99992

Tab. S1 Pseudo-first-order and Pseudo-second-order kinetic model parameters

Fig.S1 As(III) removal by S-nZVI under different initial As(III) concentration. The insert figure in the top right-hand corner is the reaction time of 24 h. Reaction conditions: the S-nZVI dose is 0.5 g·L⁻¹; [As(III)]_{initial}=10 mg·L⁻¹; the $pH_{initial}$ is 5.

Fig.S2 (a) TEM image of nZVI; ADF image (b) O mapping of S-nZVI; (c) TEM

image of S-nZVI; (d) SAED pattern of S-nZVI.

Fig.S3 XRD patterns of S-nZVI at different S/Fe.

Fig. S4 Crystal plane spacing of Fe (110) in S-nZVI.

Fig.S5 XPS survey spectra for S-nZVI.

Fig.S6 XPS spectra peaks for S-nZVI. (a) Fe2p, (b) Fe species distribution.

Fig.S7 XPS survey spectra for S-nZVI reacted with As(III). Reactionconditions: the S-nZVI dose is 5 g·L⁻¹; [As(III)]_{initial}=100 mg·L⁻¹; the pH_{initial} is 5;andthereactiontimeis24

Fig. S8 HR-XPS spectra of As3d peaks for S-nZVI reacted with As(III) at sputtering depths of 0, 2, 10 nm. (a) As3d species distribution; (b) Relative percentage of As species. Reaction conditions: the S-nZVI dose is 5 g·L⁻¹; $[As(III)]_{initial}=100 \text{ mg}\cdot\text{L}^{-1}$; the pH_{initial} is 5; and the reaction time is 24 h.

Fig. S9 Zeta potential of nZVI and S-nZVI.

Tab. S2 As species distribution of XPS spectra curve fitting for spentparticles of S-nZVI / nZVI reacted with As(III)

lon etching	Materials	As(V)	As(III)	As(0)
depth				
0 nm	S-nZVI	0.44855	0.55145	/
	nZVI	0.08228	0.57309	0.34463
2 nm	S-nZVI	0.3899	0.6101	/
	nZVI	0.10414	0.52084	0.37502
10 nm	S-nZVI	0.32224	0.67776	/
	nZVI	0.12545	0.50257	0.37198