Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Freezing-induced microplastic degradation in anoxic Fe(II)-containing solution:

the key role of Fe(IV) and •OH

Jiaxin Lv,^a Ruixin Chen^b, Zhen Wu^a, Yang Bai^b, Han Song^{a,*}, Chen Tian^{c,d}, Mengye Wang^{b,*}, and Zhang Lin^{a, c, d}

^a. School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China

^b. State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University, Guangzhou, 510275 China

^c. School of Metallurgy and Environment, Central South University, Changsha, 410083, China.

^d. Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.

*Correspondence: wangmengye@mail.sysu.edu.cn; hansong023@126.com

This PDF file includes:

Figures S1 to S10. Table S1.

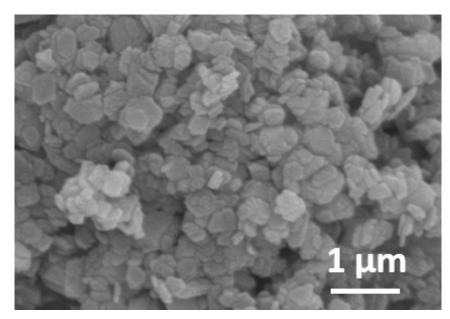
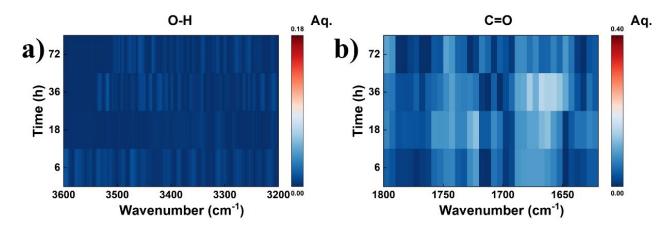



Fig. S1 SEM image of PS-Fe(II)-I after 12d of reaction.

Fig. S2 Heat mappings of a) -OH and b) C=O functional group analyzed by FT-IR for PS-Fe-I after reaction of 6 h, 18 h, 36 h and 72 h.

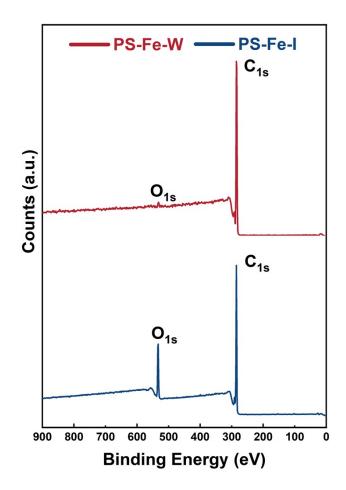
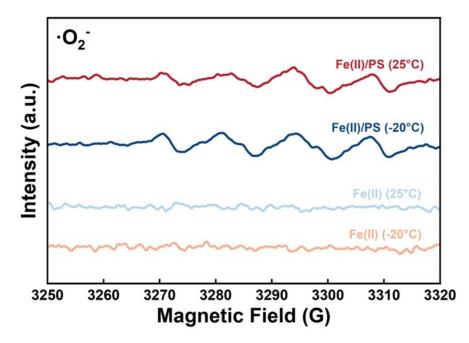



Fig. S3 XPS spectra of PS-Fe-W and PS-Fe-I after the degradation reaction for 36 h.

Fig. S4 EPR spectra of $\bullet O_2^-$ in PS frozen (-20 °C, Fz.) and aqueous (25 °C, Aq.) Fe (II) solutions after 36 h. Fe(II) = 100 μ mol/L, [PS] = 25 mg/L.

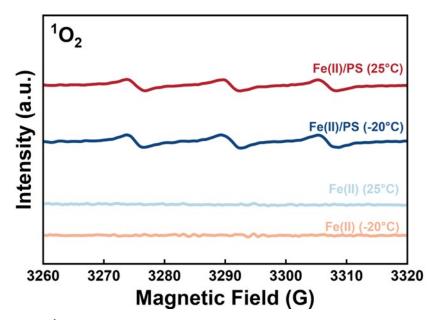
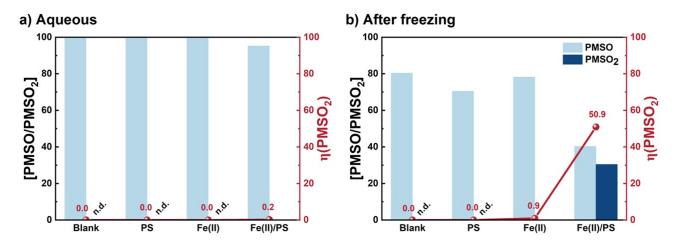
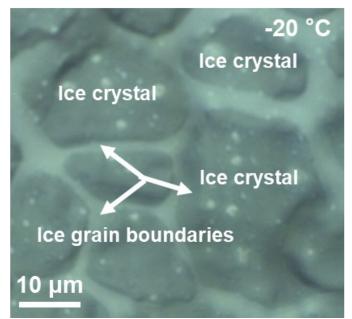
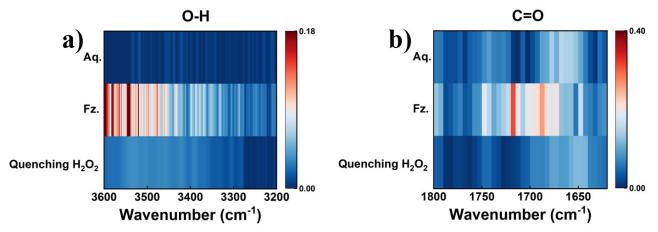
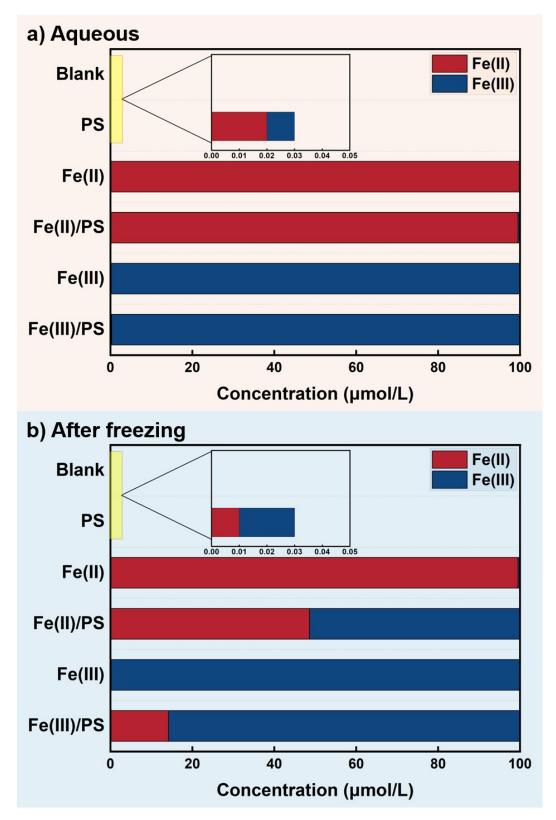



Fig. S5 EPR spectra of ${}^{1}O_{2}$ in PS frozen (-20 °C, Fz.) and aqueous (25 °C, Aq.) Fe(II)-containing solution after 36 h. Fe(II) = 100 μ mol/L, [PS] = 25 mg/L.

Fig. S6 PMSO degradation, PMSO₂ formation and η (PMSO₂) a)before freezing and b)after freezing in a blank, PS solution, Fe(II) solution, Fe(II) and PS solution. [Fe(II)]₀ = [PMSO]₀ = 100 µmol/L, [PS] = 2.5 mg/L, freezing temperature = -20°C, freezing time = 36h.

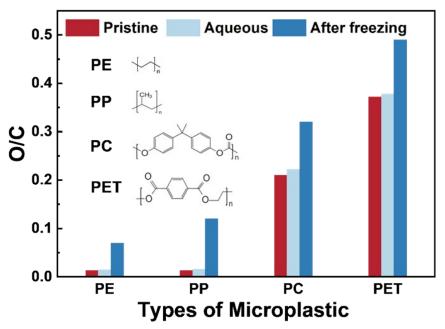

Fig. S7 Confocal Raman microscopy test of PS-Fe-I at -20°C.

Fig. S8 Heat mappings of a) -OH and b) C=O regions in FT-IR spectra by quenching H₂O₂ after 36 h degradation in water and frozen ice.

Fig. S9 The concentration of Fe(II) and Fe(III) a)before freezing and b)after freezing in a blank, PS solution, Fe(II) solution, Fe(II) and PS solution, Fe(III) solution, Fe(III) and PS. $[Fe(II)] = 100 \ \mu mol/L$, $[PS] = 2.5 \ mg/L$, freezing temperature = -20°C, freezing time = 36h.

Fig. S10 Enhanced degradation of freezing polypropylene (PP), Poly ethylene (PE), polycarbonate (PC) and polyethylene terephthalate (PET).

Organic Contaminant	Mobile Phase		Detection	Flow Rate
	Water (%)	Acetonitrile (%)	Wavelength (nm)	(mL/min)
PMSO	72	28	230	0.13
PMSO ₂	72	28	230	0.13

Table S1 Determination parameters of PMSO and $PMSO_{2.}$