Supporting Information

Structure and energetics of hydrogen bonding networks in dilute

HOD/H₂O solutions confined in silica nanopores

Anastasia G. Ilgen*1, Hasini S. Senanayake2, Ward H. Thompson2, and Jeffery A. Greathouse3

¹Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

² Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA

³ Nuclear Waste Disposal Research & Analysis Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

* Corresponding author: <u>agilgen@sandia.gov</u>

S1. Raman spectroscopy of bulk and nanoconfined HOD/H₂O solutions

Figure S1. linear plots for $\ln(Iv/Iv_0)$ vs 1/T used to construct the effective internal energy plots. (a) for Raman shift 2602 cm⁻¹; (b) for Raman shift 2551 cm⁻¹; (c) for Raman shift 2500 cm⁻¹; (d) for Raman shift 2650 cm⁻¹.

Figure S2. Comparison of the published¹ data on bulk HOD/H₂O solutions with our new data on frequency-dependent internal OD energies. We are in excellent agreement with published work. The effective internal energy of an OD bond as a function of its vibrational frequency (in Kelvin) for dilute HOD/H₂O solutions. Black data points is data from Hare and Sorenson¹; orange data points that are closely-spaced is the data collected in this study.

Figure S3. The effective internal energy of an OD bond as a function of its vibrational frequency (in Kelvin) for dilute HOD/H₂O solutions. (Left) Intensities normalized by the Intensity at v_0 at 2440 cm⁻¹; (Right) Intensities normalized by the Intensity at v_0 at 2465 cm⁻¹. The Raman shift value of ~ 25 cm⁻¹ towards higher frequency remain consistent between the two reference states.

Figure S4. The lnKd vs.1/T plot for non-porous SiO2.

S2. Classical Molecular Dynamics Simulations

The proposed silica-DDEC force field charges and Lennard-Jones parameters. (^a In interactions with other silica atoms, ^b In interactions with water molecules)

	Atom type	q(e)	σ(Å)	ε(kcal/mol)
Framework sites	Si ^a	1.86	2.7	0.0001
	Si ^b	1.86	3.0	0.01
	Oa	-0.93	2.7	0.4668
	Ob	-0.93	3.3	0.1852
Silanols	O(H)	-0.898	3.3	0.1852
	H(O)	0.433	0.0	0.0
Deprotonated Sites	Si(O ⁻)	1.655	2.7	0.0001
	O-	-1.08	3.3	0.1852
	O(SiO ⁻)	-0.99	2.7	0.4668

Reference

1 Hare, D. & Sorensen, C. Raman spectroscopic study of dilute HOD in liquid H2O in the temperature range– 31.5 to 160 C. *The Journal of chemical physics* **93**, 6954-6961 (1990).