Supplementary Information

Biogenic FeS nanoparticles modulate the extracellular electron transfer and schwertmannite transformation

Changdong Ke^a, Siyu Zhang^a, Chuling Guo^{a, b, *}, Yanping Deng^a, Yuancheng Li^a, Qian Yao^a, Xiaohu Jin^a, Zhi Dang^{a, b, c}

^a School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China

^b The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China

^c Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China

*Corresponding authors: School of Environment and Energy, South China University of Technology, Guangzhou 510006, P.R. China; Tel: +86-20-39380508, Fax: +86-20-39380508

E-mail addresses: clguo@scut.edu.cn (Chuling Guo).

Text S1: Preparation of schwertmannite (Sch)

Sch was precipitated from a ferrous sulfate solution using the H_2O_2 method as described previously. ¹ Briefly, 5 mL of H_2O_2 (30%) and 10 g of FeSO₄•7H₂O were added to 1 L of deionized water at 25°C and incubated for 24 h. The resultant ochrecolored precipitates were frequently washed with deionized water until the supernatant specific conductance was below 5 µs/cm and then they were freeze-dried.

Text S2: Composition of the modified medium

The modified medium contained (g/L): 0.1 KH₂PO₄, 1.0 NH₄Cl, 0.1 CaCl₂, 0.5 MgCl· $6H_2O$, 5.6 sodium lactate (60%), 4.76 HEPES (4-(2- hydroxyethyl)-1-piperazine ethyl sulfonic acid) and trace elements (1 mL). Trace elements were prepared as described by Myers and Nealson. ² The medium was sterilized for 30 min at 121°C and cooled down before experiment.

Text S3: Sample analyses

 Fe^{2+} concentrations were analyzed through the 1,10-phenanthroline method, using an ultraviolet-visible spectrophotometer (UV-160A, Shimadzu, Japan). ³ Ion chromatography (DIONEX ICS-1500, 148 Sunnyvale, USA) was applied to determine SO_4^{2-} concentration. Lactate and acetate concentrations were determined using High performance liquid chromatography (HPLC, Agilent LC 1260, USA). ⁴

Solid-phase samples were rinsed once with deoxygenated deionized water, dried and preserved under anoxic conditions until further analysis. X-ray diffraction (XRD) with Cu K α radiation (Bruker Advance D8, Germany) was applied to analyze the changes in mineral phases at the end of the incubation. Samples were scanned with a 0.05° 2 θ step-size and 2 s count time from $10^{\circ} \sim 80^{\circ}$ 2 θ . The morphology of secondary minerals was identified by scanning electron microscope (SEM) (ZEISS Merlin3700, Germany). Transmission electron microscopy (TEM; FEI Talos F200X and Hitachi HT7700 Hitachi H-7000FA 100Kv) required with energy dispersive spectroscopy (EDS; Oxford X-Max) was used to observe the morphology and distribution of the solid phase and bacteria.

Text S4: The qPCR reaction system and procedure

The qPCR reaction system and procedure were as described by Ke et al. ⁵ The reactions were performed in a total volume of 20 μ L with 10 μ L 2x SYBR Green

qPCR Master Mix and 0.4 μ l ROX Reference Dye (APExBIO, Houston, USA), 0.5 μ L each primer (10 μ M), and 1 μ L of DNA template. The procedures were 95°C initial denaturation 2 min, 40 cycles of 95°C denaturation 15 s, and 60°C annealing 30 s. The melting curve was obtained by heating the sample from 60°C to 95°C. Every sample was measured in triplicate to guarantee the accuracy.

Table S1 Primers used in this study

Primer	Sequence (5'-3')	Amplicon Size (bp)	Reference
recA-F	GTGATGAGGTGGTTGGTAACGAGAC	117	5
recA-R	CGCCAGTACGGTTGATACCTTGAC		
<i>mtrC</i> -F	ATGGTGCACCTATGGTCACTG	150	5
<i>mtrC</i> -R	AGCCTAAGCCTTGCCAGTTAG		
<i>cymA</i> -F	GCGAAATATTCCATCCTAGCGC	152	5
<i>cymA</i> -R	GCCAGCACTTCATTCTTCAAGG		
omcA-F	ATGCCAAGAAAGAACCCG	115	5
omcA-R	TGGTCTACTAAACAAGTGTCGC		
phsA-F	ATGTGGTCAGCGGGTGGAATTTATC	103	This study
phsA-R	GCATTGGGTTGGTACGGGACATC		

Fig. S1 XRD (a) and SEM images (b) of the FeS NPs.

Fig. S2 Determination of element distribution of minerals on cell surface by EDS. The number on the *Z*-axis corresponds to the number in Fig. 1e.

Fig. S3 The total Fe^{2+} concentration during the Sch reduction by *S. oneidensis* MR-1 (WT) and its mutants.

Fig. S4 The interaction of FeS and Sch in the absence of S. oneidensis MR-1.

Fig. S5 The cell viability was detected by CLSM.

Fig. S6 The cell viability was detected by LDH leakage.

Reference

- S. Regenspurg, A. Brand and S. Peiffer, Formation and stability of schwertmannite in acidic mining lakes 11Associate editor: C. M. Eggleston, *Geochim. Cosmochim. Ac.*, 2004, 68, 1185-1197.
- C. R. Myers and K. H. Nealson, Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor, *Science*, 1988, 240, 1319-1321.
- N. Brand, G. Mailhot and M. Bolte, Degradation photoinduced by Fe (III): method of alkylphenol ethoxylates removal in water, *Environ. Sci. Technol.*, 1998, **32**, 2715-2720.
- D. B. Albert and C. S. Martens, Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC, *Mar. Chem.*, 1997, 56, 27-37.
- C. Ke, C. Guo, S. Zhang, Y. Deng, X. Li, Y. Li, G. Lu, F. Ling and Z. Dang, Microbial reduction of schwertmannite by co-cultured iron-and sulfatereducing bacteria, *Sci. Total Environ.*, 2023, 861, 160551.