Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

Green synthesis of a magnetite/graphitic carbon nitride 2D nanocomposite for efficient Hg²⁺ remediation

Raghuraj Singh Chouhan,^{a*} Jan Gačnik^a, Igor Živković^a, Sreekanth Vijayakumaran Nair^{a,b}, Nigel Van de Velde^c, Alenka Vesel^d, Primož Šket^e, Sonu Gandhi^{f*}, Ivan Jerman^{c*}, Milena Horvat^{a*}

^a. Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia.

^{b.} Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia.

^{c.}National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia

^d Department of Surface Engineering, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

^{e.}Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia

^{f.}DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad, Telangana 500032, India.

Fig. S1. A schematic representation of the reaction mechanism for generating ¹⁹⁷Hg radiotracer.

Fig. S2 (a) Raman, and (b) N1 XPS profile of g-CN and M-g-CN

Fig S3. XPS spectra of as-prepared samples. (**a**,**b**) C1s and N1s of g-CN with and without Hg²⁺. (**c**,**d**) M-g-CN with and without Hg²⁺. (**e**,**f**) O1s spectra and Fe2p survey spectra of both samples.

Table S1. Surface elemental arrangement of the samples in at.% calculated from survey spectra (Fig S3f.)

Sample	С	Ν	0	Na	Fe	Hg	Cl
Without Hg ²⁺	24.3	6.4	51.5	3.0	14.9		
With Hg ²⁺	46.0	12.8	30.9	0.5	8.0	0.5	1.4

1. Analysis of samples using CP-MAS-NMR

The coordination of ions in g-CN+Hg²⁺ was demonstrated using ¹³C and ¹⁵N CP-MAS NMR spectra of g-CN and g-CN+Hg²⁺. The ¹³C CP-MAS NMR spectrum of g-CN showed two groups of signals (Fig S4). The low-field signals between δ 160 and 170 ppm corresponded to carbon atoms adjacent to the amino groups (Fig S6, 1). The signals observed for carbon atoms marked (Fig S6, 2) resonated between δ 152 and 160 ppm. In the ¹⁵N CP-MAS NMR spectrum of g-CN, a signal at δ -245 ppm was observed, which belonged to the bridging nitrogen atom marked (Fig S6, 5), while the outer ring nitrogen atoms (Fig S6, 4) resonated between δ -170 and -210 ppm (Fig S5a). The signals for amino nitrogen atoms (Fig S6, 3) appeared between δ -260 and -285 ppm (Fig S5a). Changes in the shape and chemical shifts of signals in the 13C and 15N CP-MAS NMR spectra, particularly for the outer ring nitrogen atoms between δ -170 and -210 ppm, were observed after salt soaking, indicating the coordination of Hg cations with the heptazine rings of g-CN (Figs S4 and S5b). Similar changes in ¹³C and ¹⁵N CP-MAS NMR spectra have been previously observed in g-CN soaked with KCl.¹

Fig S4 ¹³C CP-MAS of g-CN (black) and g-CN+ Hg^{2+} (red). The observed variations in signal shape and chemical shifts among the spectra indicate an interaction between Hg^{2+} and g-CN. Chemical shifts were referenced to tetramethylsilane. The spectra were obtained using a 600 MHz NMR spectrometer with a spinning rate of 16 kHz.

Fig S5. ¹⁵N CP-MAS of g-CN (a) and g-CN+Hg²⁺ (b). A significant difference is noticeable in the signals attributed to the outer ring nitrogen atoms marked with 4 in Fig S6, resonating between δ -170 and -210 ppm, suggesting the coordination of Hg cations with the heptazine rings of g-CN. Chemical shifts were referenced to nitromethane. The spectra were obtained using a 600 MHz NMR spectrometer with a spinning rate of 10 kHz.

Fig S6. Heptazine core with atom numbering.

Fig S7. Binding efficiency of M-g-CN with different concentrations of Hg²⁺.

Fig S8. Amount of time required by M-g-CN to bind Hg^{2+} in the solution.

Fig S9. Reusability studies of as synthesized M-g-CN with repeated cycles of Hg²⁺ binding.

Amount of		Concentration of Hg ²⁺ (pg mL ⁻¹)	Recoveries of Hg ²⁺ expressed as % of the spiked Hg ²⁺ concentration					
(mg ml ⁻¹)	Trials			(M-g-CN)	(Unbound)			
(1181127			Bound	Average (± SD) of	Unbound	Average (± SD) of		
			Hg ²⁺	bound Hg ²⁺	Hg ²⁺	unbound Hg ²⁺		
100	1	1	99.65	00.25 (+ 0.25)	0.71	0.97 (± 0.36)		
100	II	1	99.12	99.35 (± 0.35)	1.23			
100	1	10	98.99	09.19(+1.14)	2.83	2.16 (± 0.94)		
	11	10	97.37	98.18 (± 1.14)	1.49			
100	1	100	98.99	00.04 (1.0.20)	2.29	2.45 (± 0.07)		
100	11	100	98.71	98.84 (± 0.20)	2.62			
100	1	1000	95.88	04.00 (+ 1.25)	6.76	C 2 (L 0 70)		
	II	1000	94.11	94.99 (± 1.25)	5.77	0.2 (± 0.70)		
100	I	10000	71.05	70.01 (+ 0.10)	24.45	25 19 (+ 1 02)		
100		10000	70.77	70.91 (± 0.19)	25.91	25.18 (± 1.03)		

Table S2. Maximum binding efficiency of M-g-CN with different concentrations of Hg²⁺

 Table S3. Real matrices recovery studies

Matrices	Trials	Spiked Hg ²⁺ (pg mL ⁻¹)	Reco Hg ²⁺ adsor	veries of Hg ²⁺ expressed a bed on the material (M- g-CN)	ed Hg concentration nains in the solution (Unbound)		
			Bound Hg ²⁺	Average (± SD) of bound Hg ²⁺	Unbound Hg ²⁺	Average (± SD) of unbound Hg ²⁺	
Mariaa	I	50	96.7	00.0 (1.1.00)	4.55		
Marine	11	50	95.2	96.0 (± 1.08)	4.51	4.53 (± 0.03)	
Stroom	I	50	98.0	07 5 (+ 0 61)	3.22	2 56 (+ 0 40)	
Stream	Ш	50	97.1	97.5 (± 0.01)	3.29	5.50 (± 0.49)	
Procinitation	I	50	98.6	09.2 (± 0.44)	2.89	2 60 (+ 0 28)	
Precipitation	Ш	50	97.9	96.2 (± 0.44)	2.50	2.09 (± 0.28)	
Ultra-pure -	I	50	99.8		0.19	$0.14 (\pm 0.06)$	
		50	99.0	99.4 (± 0.57)	0.10	$0.14(\pm 0.06)$	

Table S4. Interference studies

	lons	Ha ²⁺	Hg ²⁺ Concentration Trials	Recoveries of Hg ²⁺ expressed as % of the spiked Hg ²⁺ concentration				
Interfering Ions	(μg mL ⁻¹) Natural	Concentration (pg mL ⁻¹)		Hg ²⁺ adso	Hg ²⁺ adsorbed on the material (M-g-CN)		Hg ²⁺ remains in the solution (Unbound)	
	Environment	(#8=)		Bound	Average (± SD) of	Unbound	Average (± SD) of	
				Hg ²⁺	bound Hg ²⁺	Hg ²⁺	unbound Hg ²⁺	
Na⁺	11000	50	I	99.78	99.38 (± 0.55)	1.69	1 40 (+ 0 40)	
Marine	11000	50	11	98.99		1.12	1.40 (± 0.40)	
Na⁺	10	50	1	98.71	97.78 (± 1.30)	3.84	2 11 (+ 1 22)	
Stream	10	50	11	96.86		2.39	3.11 (± 1.32)	
K+	200	50	1	98.66	98.83 (± 0.24)	1.39	$2.10(\pm 1.12)$	
	200	50	П	99.01		2.99	2.19 (± 1.13)	
Ca⁺	400	50	1	99.54	100.05 (± 0.65)	0.95	1 25 (1 0 42)	
	400	50	11	100.47		1.56	1.25 (± 0.43)	
Ag+	0.002	50	1	97,11	97.56 (± 0.64)	3.53	2 22 (1 0 44)	
	0.002	50	11	98.02		2.92	3.22 (± 0.44)	
Co ²⁺	0.01	50	I	99.32	99.77 (± 0.63)	1.81	1 20 (+ 0 59)	
	0.01	50	П	100.22		0.98	1.39 (± 0.58)	

Zn ²⁺	10	50	1	97.99	98.33 (± 0.48)	3.93	2 24 (+ 0 92)	
	10	50	11	98.67		2.75	3.34 (± 0.83)	
Fe ³⁺	0.03	50	1	95.94	97.23 (± 1.83)	3.63	4 4 2 (+ 0 70)	
	0.03	50	11	98.53		4.63	4.13 (± 0.70)	
Mn ²⁺	0.2	50	1	100.11	99.55 (± 0.63)	0.59	074 (+ 0.21)	
	0.2	50	11	99.1.		0.95	0.74 (± 0.21)	
Ni ²⁺	0.002	50	1	99.88		0.06	0.42 (+ 0.50)	
	0.002	50		99.27	99.57 (± 0.43)	0.78	0.42 (± 0.50)	
Bi ³⁺	1x10 ⁻⁵	50	1	98.99	00.01/1.1.40	2.62	2 16 (+ 0 77)	
	1x10 ⁻⁵	50	11	97.01	98.01 (± 1.40)	3.71	3.10 (± 0.77)	
Cl⁻	35000	50	1	99,7	99.88 (± 0.26)	0.66	0.40(1.0.22)	
	35000	50	11	100.07		0.33	0.49 (± 0.23)	
Br⁻	70	50	1	99.71	99.35 (± 0.50)	1.82	1 77 (+ 0 07)	
	70	50	II	99.43]	1.72	1.77 (± 0.07)	
I-	1	50	1	96.27	97.42 (± 1.62)	4.71	276 (1 4 2 4)	
	1	50	П	98.57]	2.81	3.70 (± 1.34)	

Table S5. Reusability studies

No. of			Recoveries of Hg ²⁺ expressed as % of the spiked Hg ²⁺ concentration					
Reusable	Trials	Concentration of Hg ²⁺	Hg ²⁺ adso	rbed on the material	Hg ²⁺ remains in the solution			
Cycles	111015	(pg mL ⁻¹)	_	(M-g-CN)	(Unbound)			
0,0.00			Bound	Average (± SD) of	Unbound	Average (± SD) of		
			Hg ²⁺	bound Hg ²⁺	Hg ²⁺	unbound Hg ²⁺		
0	<u> </u>	100	99.66	99 70 (+ 0 06)	0.34	0.29 (+ 0.06)		
0	II	100	99.75	99.70 (± 0.00)	0.25	0.29 (± 0.00)		
1		100	98.92	00 14 (+ 0 21)	0.18	0 80 (+ 0 87)		
1	II	100	99.37	99.14 (± 0.51)	1.42	0.80 (± 0.87)		
2	1	100	98.85	09 91 (+ 0 04)	1.43	1 28 (+ 0 07)		
2		100	98.78	98.81 (± 0.04)	1.32	1.38 (± 0.07)		
2	I	100	98.77	09 75 (+ 0 02)	1.23	1 10 (+ 0 05)		
5	II	100	98.73	98.75 (± 0.02)	1.15	1.19 (± 0.05)		
Λ	I	100	98.24		1.76			
4	П	100	98.96	98.00 (± 0.30)	1.04	1.40 (± 0.50)		
E	I	100	96.93	07.06 (± 0.10)	3.10	2 62 (+ 0 26)		
5	П	100	97.20	97.00 (± 0.19)	2.55	2.85 (± 0.58)		
c	I	100	96.85		2.36	2 04 (± 0 91)		
U	II	100	96.98	90.91 (± 0.09)	3.52	2.94 (± 0.01)		
7	I	100	95.11		1.66	2 10 (+ 2 02)		
/	П	100	95.62	95.50 (± 0.50)	4.54	5.10 (± 2.05)		
0	I	100	95.36	04 17 (+ 1 67)	5.80			
ŏ	II	100	92.99	94.17 (± 1.07)	5.03	5.43 (± 0.55)		
0	I	100	92.10	02 19(+ 0 12)	13.3	7 70 (+ 7 72)		
9	II	100	92.27	92.10(± 0.12)	2.33	1.19(±1.12)		
10	I	100	90.06		7.92	9 11 (+ 0 25)		
10	II	100	91.11	90.38 (± 0.74)	8.29	0.11 (± 0.25)		

Reference:

1 H. Gao, S. Yan, J. Wang and Z. Zou, *Dalt. Trans.*, 2014, **43**, 8178–8183.