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Fig. S1. A schematic representation of the reaction mechanism for generating 197Hg radiotracer.

Fig. S2 (a) Raman, and (b) N1 XPS profile of g-CN and M-g-CN
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Fig S3. XPS spectra of as-prepared samples. (a,b) C1s and N1s of g-CN with and without Hg2+. (c,d) M-g-CN with and without Hg2+. 
(e,f) O1s spectra and Fe2p survey spectra of both samples.
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Table S1. Surface elemental arrangement of the samples in at.% calculated from survey spectra (Fig S3f.)

1. Analysis of samples using CP-MAS-NMR

The coordination of ions in g-CN+Hg2+ was demonstrated using 13C and 15N CP-MAS NMR spectra of g-CN and g-CN+Hg2+. The 
13C CP-MAS NMR spectrum of g-CN showed two groups of signals (Fig S4). The low-field signals between δ 160 and 170 ppm 

corresponded to carbon atoms adjacent to the amino groups (Fig S6, 1). The signals observed for carbon atoms marked (Fig 

S6, 2) resonated between δ 152 and 160 ppm. In the 15N CP-MAS NMR spectrum of g-CN, a signal at δ -245 ppm was observed, 

which belonged to the bridging nitrogen atom marked (Fig S6, 5), while the outer ring nitrogen atoms (Fig S6, 4) resonated 

between δ -170 and -210 ppm (Fig S5a). The signals for amino nitrogen atoms (Fig S6, 3) appeared between δ -260 and -285 

ppm (Fig S5a). Changes in the shape and chemical shifts of signals in the 13C and 15N CP-MAS NMR spectra, particularly for 

the outer ring nitrogen atoms between δ -170 and -210 ppm, were observed after salt soaking, indicating the coordination 

of Hg cations with the heptazine rings of g-CN (Figs S4 and S5b). Similar changes in 13C and 15N CP-MAS NMR spectra have 

been previously observed in g-CN soaked with KCl.1  

Fig S4 13C CP-MAS of g-CN (black) and g-CN+ Hg2+ (red). The observed variations in signal shape and chemical shifts among 

the spectra indicate an interaction between Hg2+ and g-CN. Chemical shifts were referenced to tetramethylsilane. The spectra 

were obtained using a 600 MHz NMR spectrometer with a spinning rate of 16 kHz.

Sample C N O Na Fe Hg Cl

Without Hg2+ 24.3 6.4 51.5 3.0 14.9

With Hg2+ 46.0 12.8 30.9 0.5 8.0 0.5 1.4
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Fig S5. 15N CP-MAS of g-CN (a) and g-CN+Hg2+ (b). A significant difference is noticeable in the signals attributed to the outer 

ring nitrogen atoms marked with 4 in Fig S6, resonating between δ -170 and -210 ppm, suggesting the coordination of Hg 

cations with the heptazine rings of g-CN. Chemical shifts were referenced to nitromethane. The spectra were obtained using 

a 600 MHz NMR spectrometer with a spinning rate of 10 

kHz.

Fig S6. Heptazine core with atom numbering.
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Fig S7. Binding efficiency of M-g-CN with different concentrations of Hg2+.

Fig S8. Amount of time required by M-g-CN to bind Hg2+ in the solution.

Fig S9. Reusability studies of as synthesized M-g-CN with repeated cycles of Hg2+ binding.
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Table S2. Maximum binding efficiency of M-g-CN with different concentrations of Hg2+

Recoveries of Hg2+ expressed as % of the spiked Hg2+ concentration

Hg2+ adsorbed on the material 
(M-g-CN)

Hg2+ remains in the solution 
(Unbound)

Amount of 
Material

 (mg mL-1)
Trials Concentration of Hg2+ 

(pg mL-1)
Bound 
Hg2+

Average (± SD) of 
bound Hg2+

Unbound 
Hg2+

Average (± SD) of 
unbound Hg2+

I 1 99.65 0.71
100

II 1 99.12
99.35 (± 0.35)

1.23
0.97 (± 0.36)

I 10 98.99 2.83
100

II 10 97.37
98.18 (± 1.14)

1.49
2.16 (± 0.94)

I 100 98.99 2.29
100

II 100 98.71
98.84 (± 0.20)

2.62
2.45 (± 0.07)

I 1000 95.88 6.76
100

II 1000 94.11
94.99 (± 1.25)

5.77
6.2 (± 0.70)

I 10000 71.05 24.45
100

II 10000 70.77
70.91 (± 0.19)

25.91
25.18 (± 1.03)

Table S3. Real matrices recovery studies

Recoveries of Hg2+ expressed as % of the spiked Hg concentration

Hg2+ adsorbed on the material (M-
g-CN)

Hg2+ remains in the solution 
(Unbound)

Matrices Trials Spiked Hg2+ (pg 
mL-1)

Bound 
Hg2+

Average (± SD) of 
bound Hg2+

Unbound 
Hg2+

Average (± SD) of 
unbound Hg2+

I 50 96.7 4.55
Marine

II 50 95.2
96.0 (± 1.08)

4.51
4.53 (± 0.03)

I 50 98.0 3.22
Stream

II 50 97.1
97.5 (± 0.61)

3.29
3.56 (± 0.49)

I 50 98.6 2.89
Precipitation

II 50 97.9
98.2 (± 0.44)

2.50
2.69 (± 0.28)

I 50 99.8 0.19
Ultra-pure

II 50 99.0
99.4 (± 0.57)

0.10
0.14 (± 0.06)

Table S4. Interference studies

Recoveries of Hg2+ expressed as % of the spiked Hg2+ 
concentration

Hg2+ adsorbed on the material 
(M-g-CN)

Hg2+ remains in the solution 
(Unbound)

Interfering 
Ions

Ions 

Concentration 
(µg mL-1)
Natural 

Environment

Hg2+ 

Concentration  
(pg mL-1)

Trials

Bound 
Hg2+

Average (± SD) of 
bound Hg2+

Unbound 
Hg2+

Average (± SD) of 
unbound Hg2+

11000 50 I 99.78 1.69Na+

Marine 11000 50 II 98.99
99.38 (± 0.55)

1.12
1.40 (± 0.40)

10 50 I 98.71 3.84Na+

Stream 10 50 II 96.86
97.78 (± 1.30)

2.39
3.11 (± 1.32)

200 50 I 98.66 1.39K+

200 50 II 99.01
98.83 (± 0.24)

2.99
2.19 (± 1.13)

400 50 I 99.54 0.95Ca+

400 50 II 100.47
100.05 (± 0.65)

1.56
1.25 (± 0.43)

0.002 50 I 97,11 3.53Ag+

0.002 50 II 98.02
97.56 (± 0.64)

2.92
3.22 (± 0.44)

0.01 50 I 99.32 1.81Co2+

0.01 50 II 100.22
99.77 (± 0.63)

0.98
1.39 (± 0.58)
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10 50 I 97.99 3.93Zn2+

10 50 II 98.67
98.33 (± 0.48)

2.75
3.34 (± 0.83)

0.03 50 I 95.94 3.63Fe3+

0.03 50 II 98.53
97.23 (± 1.83)

4.63
4.13 (± 0.70)

0.2 50 I 100.11 0.59Mn2+

0.2 50 II 99.1.
99.55 (± 0.63)

0.95
0.74 (± 0.21)

0.002 50 I 99.88 0.06Ni2+

0.002 50 II 99.27
99.57 (± 0.43)

0.78
0.42 (± 0.50)

1x10-5 50 I 98.99 2.62Bi3+

1x10-5 50 II 97.01
98.01 (± 1.40)

3.71
3.16 (± 0.77)

35000 50 I 99,7 0.66Cl-

35000 50 II 100.07
99.88 (± 0.26)

0.33
0.49 (± 0.23)

70 50 I 99.71 1.82Br-

70 50 II 99.43
99.35 (± 0.50)

1.72
1.77 (± 0.07)

1 50 I 96.27 4.71I-

1 50 II 98.57
97.42 (± 1.62)

2.81
3.76 (± 1.34)

Table S5. Reusability studies

Recoveries of Hg2+ expressed as % of the spiked Hg2+ concentration

Hg2+ adsorbed on the material 
(M-g-CN)

Hg2+ remains in the solution 
(Unbound)

No. of 
Reusable 

Cycles
Trials Concentration of Hg2+ 

(pg mL-1)
Bound 
Hg2+

Average (± SD) of 
bound Hg2+

Unbound 
Hg2+

Average (± SD) of 
unbound Hg2+

I 100 99.66 0.34
0

II 100 99.75
99.70 (± 0.06)

0.25
0.29 (± 0.06)

I 100 98.92 0.18
1

II 100 99.37
99.14 (± 0.31)

1.42
0.80 (± 0.87)

I 100 98.85 1.43
2

II 100 98.78
98.81 (± 0.04)

1.32
1.38 (± 0.07)

I 100 98.77 1.23
3

II 100 98.73
98.75 (± 0.02)

1.15
1.19 (± 0.05)

I 100 98.24 1.76
4

II 100 98.96
98.60 (± 0.50)

1.04
1.40 (± 0.50)

I 100 96.93 3.10
5

II 100 97.20
97.06 (± 0.19)

2.55
2.83 (± 0.38)

I 100 96.85 2.36
6

II 100 96.98
96.91 (± 0.09)

3.52
2.94 (± 0.81)

I 100 95.11 1.66
7

II 100 95.62
95.36 (± 0.36)

4.54
3.10 (± 2.03)

I 100 95.36 5.80
8

II 100 92.99
94.17 (± 1.67)

5.03
5.43 (± 0.55)

I 100 92.10 13.3
9

II 100 92.27
92.18(± 0.12)

2.33
7.79 (± 7.72)

I 100 90.06 7.92
10

II 100 91.11
90.58 (± 0.74)

8.29
8.11 (± 0.25)

Reference:

1 H. Gao, S. Yan, J. Wang and Z. Zou, Dalt. Trans., 2014, 43, 8178–8183.


