Supporting information

Investigation of magnetite-Co interactions: from environmentally relevant trace Co levels to core-shell Fe₃O₄@Co(OH)₂ nanoparticles with magnetic applications

Laura Fablet^{1,2}, Fadi Choueikani², Mathieu Pédrot¹, Margaux Kerdiles¹, Mathieu Pasturel³ and Rémi Marsac^{1*}

¹ Univ Rennes, CNRS, Géosciences Rennes – UMR 6118, F-35000 Rennes, France

² Synchrotron SOLEIL, l'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France

³Univ Rennes, CNRS, ISCR – UMR 6226, F-35000, Rennes, France

(*corresponding author: remi.marsac@cnrs.fr)

_				
1	[Co] _{tot} (mM)	[Co] _{aq} (mM)	[Co] _s (mM)	[Co] _s (atom nm ⁻²)
	0.003	0.000002	0.003	0.04
	0.005	0.000003	0.005	0.06
	0.01*	0.000006	0.010	0.12
	0.02	0.000054	0.020	0.24
	0.04 *	0.000286	0.040	0.48
	0.1 *	0.001213	0.099	1.19
	0.16	0.001895	0.158	1.90
	0.2 *	0.015321	0.185	2.22
	0.32	0.017277	0.303	3.65
	0.64	0.051845	0.588	7.08
	0.8 *	0.110548	0.689	8.30
	1.28	0.366694	0.913	11.00
	2.56	0.740426	1.820	21.92
	3.00 *	0.863300	2.137	25.74

Table S1 Corresponding total ($[Co]_{tot}$), aqueous ($[Co]_{aq}$) and solid ($[Co]_s$) concentrations of cobalt. *Samples analyzed by XAS and XMCD.

Fig. S1 TEM images of stoichiometric magnetite nanoparticles with various Co concentrations: (a) $[Co]_s = 0.12$ atom nm^{-2} , (b) $[Co]_s = 8.30$ atom nm^{-2} , and (c) $[Co]_s = 25.74$ atom nm^{-2} . The first image has a scale of 100 nm; the second of 20 nm.

ig. S2 X-ray diffraction (XRD) pattern of the magnetite sample with $[Co]_s = 25.74$ atom nm⁻² (red line), and theoretical patterns of Co(OH)_{2(s)} (grey line) and Fe₃O₄ (black line).

Table S2 Optimized parameters of equation 1, for Langmuir models (L_1 and L_2) and Freundlich model (F). Q_{max} is the adsorption capacities (atom nm⁻²).

	L ₁	L ₂	F
Q	0.45 ± 0.13	10.09 ± 1.70	
Log K	4.68 ± 0.17	1.41 ± 0.36	1.37 ± 0.26
n			2.34 ± 0.58

Fig. S3 Normalized XAS (a) and XMCD (b) spectra at the $L_{2,3}$ cobalt edge of stoichiometric magnetite with different [Co]_s (from 0.12 to 25.74 atom nm⁻²). XMCD and XAS signals are normalized by dividing the raw signal by the edge jump of XAS.

Fig. S4 Normalized XAS (a) and XMCD (b) spectra at the Fe L_{2-3} -edge of stoichiometric magnetite with different [Co]_s (from 0.12 to 25.74 atom nm⁻²). XAS signals are normalized by dividing the raw signal by the edge jump of XAS. XMCD signal was normalized to the Fe³⁺_(Td) peak (positive one).

Fig. S5 Linear combination analysis of normalized XAS spectra at Co L_3 edge for different [Co]_s (from 0.12 to 25.74 atom nm⁻²). Data are represented by a solid line and models by a dotted line.

Fig. S6 XMCD magnetization versus magnetic field measurement at Fe edge at 4.2 K for four $[Co]_s$ (from 0.48 to 25.74 atom nm⁻²) and a sample of stoichiometric Fe₃O₄ without Co.

Fig. S7 Raw XMCD magnetization curves versus magnetic field measurement at Co L_3 -edge at 4.2 K for four solid cobalt concentrations (from 0.48 to 25.74 atom nm⁻²).