Supplementary materials

Enhanced removal of oxytetracycline from aquatic solution using $MnO_x@Fe_3O_4$ bimetallic nanoparticle coated powdered activated carbon: synergism of adsorption and chemical autocatalytic oxidation processes

Jiahui Zhou ^{a,*}, Shu Wang ^b

^a State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China

^b Department of Pharmaceutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8501, Japan

* Corresponding author. E-mail address: zhoujiahui1991@126.com (J. Zhou)

7 Tables 9 Figures 13 Pages

Text S1

Preparation of $MnO_x@Fe_3O_4$ bimetallic nanoparticles coated powdered activated carbon ($MnO_x@Fe_3O_4$ -PAC)

The 200 mesh acid-washed PAC was chosen as the carbon matrix for $MnO_x@Fe_3O_4$ -PAC synthesis. 3.9 g FeCl₃·6H₂O and 1.4 g FeCl₂·4H₂O were dissolved in a beaker with 450 mL ultrapure water at 80°C. 3.3 g PAC was added into the solution, and then 5M NaOH solution was added dropwise (volume: 50 mL; velocity: 10 mL/min) into the suspension, mechanical stirring for 1h, and maturing for 2h. After removing the supernatant, the remains were mixed with 2.3 g MnCl₂·4H₂O in the beaker with 400 mL fresh ultrapure water, and temperature was remained at 80°C. The aqueous solution contained 6.0 g/L KMnO₄ and 3.0 g/L NaOH was added dropwise (volume: 200 mL; velocity: 10 mL/min) into the suspension, mechanical stirring for 1h, and maturing for 2h. After removing the supernatant, the remains were mixed with 2.3 g MnCl₂·4H₂O in the beaker with 400 mL fresh ultrapure water, and temperature was remained at 80°C. The aqueous solution contained 6.0 g/L KMnO₄ and 3.0 g/L NaOH was added dropwise (volume: 200 mL; velocity: 10 mL/min) into the suspension, mechanical stirring for 1h, and maturing for 2h. After removing the supernatant, the remains were dried overnight, washed with ultrapure water to neutral pH, freeze-dried and hermetical stored until use. Eventually, MnO_x@Fe₃O₄-PAC was synthesized with a mass ratio of 1/1/2 for MnO_x/Fe₃O₄/PAC.

Text S2

Adsorption isotherms

The Langmuir and Freundlich isotherm models were included as follows:

$$q_e = \frac{K_L q_m C_e}{1 + K_L C_e}$$
$$q_e = K_F C_e^{\frac{1}{n}}$$

where $q_e \text{ (mg/g)}$ and $q_m \text{ (mg/g)}$ were the equilibrium adsorption capacity and the maximum adsorption capacity of OTC, respectively; $C_e \text{ (mg/L)}$ was the equilibrium concentration of OTC; K_L and K_F were the constants of Langmuir and Freundlich, respectively; 1/n was surface heterogeneity or adsorption intensity.

Adsorption kinetics

The pseudo-first order, pseudo-second order, Elovich model, and intraparticle diffusion equations were included as follows:

$$q_t = q_e - q_e e^{-k_1 t}$$

$$q_t = \frac{k_2 q_e^2 t}{1 + k_2 q_e t}$$
$$q_t = \frac{1}{\beta_E} \ln \frac{\alpha_E}{\beta_E} + \frac{1}{\beta_E} \ln t$$
$$q_t = k_{id} t^{\frac{1}{2}} + L$$

where $q_e \text{ (mg/g)}$ and $q_t \text{ (mg/g)}$ were the adsorption capacity of OTC at the equilibrium time and time t, respectively; $k_1 \text{ (min}^{-1)}$ was the pseudo-first-order model rate constant; $k_2 \text{ (g.mg}^{-1} \text{.min}^{-1)}$ was the pseudo-second-order model rate constant; t (min) was the adsorption time; $\alpha_{\text{E}} \text{ (mg.g}^{-1} \text{.min}^{-1)}$ and $\beta_{\text{E}} \text{ (g.mg}^{-1)}$ were Elovich constants; $k_{\text{id}} \text{ (mg.g}^{-1} \text{.min}^{-0.5)}$ was the intraparticle diffusion rate.

Adsorption thermodynamics

The adsorption thermodynamic equations were included as follows:

$$\Delta G^{0} = -RT \ln K_{D}$$
$$K_{D} = \frac{C_{A}}{C_{e}}$$
$$\ln K_{D} = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{RT}$$

where ΔG^0 (kJ.mol⁻¹), ΔH^0 (kJ.mol⁻¹), and ΔS^0 (kJ.mol⁻¹.K⁻¹) were Gibbs free energy, standard enthalpy, and standard entropy, respectively; R was the universal gas constant (8.314 J. mol⁻¹.K⁻¹); C_A and C_e were the concentration of OTC in the solid phase and the liquid phase at the equilibrium time, respectively; T (K) was the temperature.

Text S3

Analysis of OTC and Intermediates

The residual concentration of OTC was determined using high-performance liquid chromatography (HPLC) with a Zorbax Eclipse XDB-C18 column (4.6 mm \times 150 mm, 5 μ m, Agilent, USA) on an Agilent 1200 Infinity system. The mobile phase consisted of a mixture of sodium dihydrogen phosphate solution (0.01 mol/L) and acetonitrile (80:20, v/v). The column temperature was set at 35 °C, and the mobile phase flow rate was maintained at 1

mL/min. A sample injection volume of 10 μ L was used, and detection was performed at a wavelength of 268 nm.

The intermediates of OTC were identified using ultra-performance liquid chromatographymass spectrometry (UPLC-MS) on an Agilent 1290 UPLC system coupled with a Q-TOF 6550 mass spectrometer (Agilent, USA). The mobile phase consisted of a mixture of formic acid solution (0.1%, m/m) and acetonitrile (90:10, v/v). The column temperature was set at 40°C, and the injection volume was 5 μ L. The mobile phase flow rate was maintained at 0.3 mL/min. ESI (electrospray ionization) in positive ion mode was used for the estimation of OTC and its intermediates.

Fig. S1. VSM magnetization curves of MnO_x@Fe₃O₄-PAC.

Г	ab	le	S1	l. /	Aperture	parameters	of	P	ΡA	C	and	Ν	[n	Э _х	(a)	Fe ₃	O,	4-F	PA	C	,
---	----	----	----	-------------	----------	------------	----	---	----	---	-----	---	----	----------------	-----	-----------------	----	-----	----	---	---

				<u> </u>	
	BET	BJH			
	specific	total	Macropore	Mesopore	Micropore
Sample	surface	pore	volume	volume	volume
	area	volume	/mL.g ⁻¹	/mL.g ⁻¹	/mL.g ⁻¹
	$/m^2.g^{-1}$	/mL.g ⁻¹			
PAC	347.54	0.25	0.03	0.12	0.10
MnO _x @Fe ₃ O ₄ -PAC	222.89	0.37	0.04	0.27	0.06

Fig. S2. Effect of HA on OTC adsorption on $MnO_x@Fe_3O_4$ -PAC. Reaction conditions: OTC_0 = 150 ppm, $MnO_x@Fe_3O_4$ -PAC dosage = 0.5 g/L, initial pH = 3.

Table S2. The parameters of Langmuir and Freundlich isotherms for the adsorption of OTCon PAC and $MnO_x@Fe_3O_4$ -PAC.

	Lang	muir isothe	rms	Freundlich isotherms				
		$K_L q_m C$	е	1				
Sample	q_e	$=\frac{1}{1+K_L C}$	'e	$q_e = K_F C_e^n$				
	q_m	K _L	R^2	K _F	п	R^2		
PAC	285.558	0.598	0.832	111.041	4.146	0.979		
MnO _x @Fe ₃ O ₄ -PAC	284.800	0.063	0.915	47.159	2.574	0.973		

Adsorption materials	$q_m (\mathrm{mg/g})$	Isotherm model	References
MnO _x @Fe ₃ O ₄ -PAC	231.7	Freundlich	This Study
zeolite/Fe ₃ O ₄	27.1	Langmuir	1
Fe ₃ O ₄ -HA-La	23.4	Redlich-Peterson	2
Surfactant-modified-alumina	143.0	two-step model	3
Multi-walled carbon nanotubes	73.0	Freundlich	4
Polyaniline coated peanut shells	65.5	Langmuir	5
Graphene oxide functionalized magnetic particles	45.0	Langmuir	6

Table S3. The maximal adsorption capacity of OTC on different adsorbents.

<i>C</i> /	$q_{ m e,max}$	pseudo-	-first-order	model	pseudo-se	econd-orde	r model	Ele	ovich mod	lel	Intra-j	particle di	ffusion m	odel
mg.L ⁻¹	mg.g ⁻¹	$q_{e,cal}$	k_1	R^2	$q_{e,cal}$	k_2	R^2	α_E	β_E	R^2	kstage1	R^2	k _{stage2}	R^2
75	111.659	101.893	0.084	0.942	108.753	0.0012	0.983	1.831	0.079	0.999	5.236	0.976	2.026	0.946
150	189.654	168.645	0.084	0.936	180.693	0.0007	0.974	0.768	0.046	0.994	13.270	0.968	4.494	0.972
225	240.528	218.003	0.081	0.949	233.256	0.0006	0.985	0.628	0.036	0.998	16.524	0.961	4.771	0.964
300	293.270	259.400	0.088	0.934	277.289	0.0005	0.975	0.689	0.031	0.997	17.488	0.965	6.792	0.997

Table S4. Parameters of adsorption kinetic models of OTC on $MnO_x@Fe_3O_4$ -PAC.

Fig. S3. OTC removal efficiency of $MnO_x@Fe_3O_4$ -PAC at different initial OTC concentrations.

Fig. S4. The influence of temperature (a); and the thermodynamic fitting curve (b) for OTC adsorption on $MnO_x@Fe_3O_4$ -PAC. Reaction conditions: $OTC_0 = 150$ ppm, $MnO_x@Fe_3O_4$ -PAC dosage = 0.5 g/L, initial pH = 3.

T/K	$\Delta G^{0/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})}$	$\Delta H^0/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$	$\Delta S^{0/(kJ\cdot(mol\cdot K)^{-1})}$	
288	-1.11			
293	-1.83	51 (2	0.10	
303	-3.08	51.62	0.18	
318	-6.61			

Table S5. Thermodynamic parameters for the adsorption of OTC on $MnO_x@Fe_3O_4$ -PAC.

Fig. S5. XPS spectra of C 1s for $MnO_x@Fe_3O_4$ -PAC before and after reaction.

Table S6. XPS results for the relative atomic percentages of C 1s on $MnO_x@Fe_3O_4$ -PAC before and after reaction.

Sample	C-C/C=C	С-ОН	С-О-С
MnO _x @Fe ₃ O ₄ -PAC	65.4%	n.d.	34.6%
MnO _x @Fe ₃ O ₄ -PAC-OTC	59.8%	40.2%	n.d.

Compared with $MnO_x@Fe_3O_4$ -PAC before reaction, the states of C 1s were significantly changed in $MnO_x@Fe_3O_4$ -PAC after reaction, the peak of C-O-C (286.5 eV) disappeared and new peak of C-OH (285.8 eV) appeared, indicating the surface properties of $MnO_x@Fe_3O_4$ -PAC changed during the reaction.

Fig. S6. XPS spectra of Fe 2p (a) and Mn 2p (b) for $MnO_x@Fe_3O_4$ -PAC before and after reaction.

Fig. S7. MS spectra of intermediates generated during the chemical autocatalytic oxidation process.

Compound	[M+H] ⁺	Molecular structural formula
ОТС	461	HO CH_3 OH
1	443	HO HO CH HO HO HO HO HO HO HO HO HO HO OH OH OH OH OH OH OH OH HO OH HO OH HO OH HO OH HO OH HO OH HO OH HO OH HO OH HO OH HO
2	477	HO CH_3 OH
3	443	$\begin{array}{c} OH \\ \hline \\ $
4	447	HO HO CH HO
5	444	HO CH ₃ OH OH Chemical Formula: C ₂₂ H ₂₁ NO ₉ m/z: 444
6	433	HO HO CH_3 OH
7	300	OH O OH Chemical Formula: C ₁₈ H ₂₁ NO ₃ m/z: 300
8	340	HO CH_3 OH O O OH
9	475	HO O N HO O O CH_3 OH OH OH OH OH OH OH OH OH OH

Table S7. Potential intermediates identified in the chemical autocatalytic oxidation process.

		OH OH
10	293	HO CH_3 OH O OH Chemical Formula: $C_{15}H_{16}O_6$ m/z: 293
11	359	HO CH ₃ OH O OH O Chemical Formula: C ₁₉ H ₁₈ O ₇ m/z: 359
12	426	OH O OH O Chemical Formula: C ₂₂ H ₁₉ NO ₈ m/z: 426
13	293	HO HO CH_3 HO CH_3 HO CH_3 OH
14	319	HO CH ₃ OH O OH O Chemical Formula: C ₁₇ H ₁₈ O ₆ m/z: 319
15	333	$\begin{array}{c} OH\\ \hline \\ \hline$
16	279	HO OH OH OH OH OH OH OH OH OH OH Chemical Formula: $C_{14}H_{14}O_6$ m/z: 279
17	277	HO CH ₃ OH O OH Chemical Formula: C ₁₅ H ₁₆ O ₅ m/z: 277
18	273	OH OH OH O OH Chemical Formula: C ₁₆ H ₁₆ O ₄ m/z: 273
19	245	O OH OH Chemical Formula: C ₁₄ H ₁₂ O ₄ m/z: 245

20	245	O OH O OH Chemical Formula: C ₁₄ H ₁₂ O ₄ m/z: 245
21	227	OH O Chemical Formula: C ₁₅ H ₁₄ O ₂ m/z: 227
22	249	HO CH ₃ OH OH OH Chemical Formula: C ₁₃ H ₁₂ O ₅ m/z: 249

Fig. S8. Comparation of OTC removal contributions of PAC, Fe_3O_4 , MnO_x , and $MnO_x@Fe_3O_4$ -PAC.

Text S4

Regeneration of MnO_x@Fe₃O₄-PAC

The experiments were conducted in 500 mL of OTC solution (50 ppm, pH = 3.0) with 0.25 g $MnO_x@Fe_3O_4$ -PAC in a thermostatic mechanical stirring bath at 303 K. After the experiment, $MnO_x@Fe_3O_4$ -PAC was separated from the aqueous solution by outside magnetic field, and then ultrasonically washed five times with 50 mL of methanol. Subsequently, the desorbed $MnO_x@Fe_3O_4$ -PAC was added into fresh OTC solution for the next cycle.

Fig. S9. Regeneration ability of MnO_x@Fe₃O₄-PAC for OTC removal.

References

- G. Başkan, Ü. Açıkel, M. Levent, Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe₃O₄ particles, *Adv. Powder Technol.*, 2022, **33**, 103600.
- 2 C. H. Yan, L. Fan, Y. Chen, Y. T. Xiong, Effective adsorption of oxytetracycline from aqueous solution by lanthanum modified magnetic humic acid, *Colloids Surf. A.*, 2020, 602, 125135.
- 3 T. D. Pham, T. T. Tran, V. A. Le, T. T. Pham, T. H. Dao, T. S. Le, Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant, *J. Mol. Liq.*, 2019, **287**, 110900.
- 4 P. Oleszczuk, B. S. Xing, Influence of anionic, cationic and nonionic surfactants on adsorption and desorption of oxytetracycline by ultrasonically treated and non-treated multiwalled carbon nanotubes, *Chemosphere*, 2011, **85**, 1312-1317.

- 5 F. Belaib, M. Azzedine, B. Boubeker, M. Abdeslam-Hassen, Experimental study of oxytetracycline retention by adsorption onto polyaniline coated peanut shells, *Int. J. Hydrogen Energy*, 2014, **39**, 1511-1515.
- 6 Y. X. Lin, S. Xu, L. Jia, Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles, *Chem. Eng. J.*, 2013, 225, 679-685.