Support Information

Rational Design of Active Sites in Alumina-Based Catalysts to Optimize Antibonding-Orbital Occupancy for Tetrafluoromethane

Decomposition

Tao Luo^a, Yingkang Chen^a, Kang Liu^a, Junwei Fu^a, Hang Zhang^a, Shanyong Chen^b, Qiyou Wang^a, Kejun Chen^a, Jun Wang^a, Wanru Liao^a, Hongmei Li^a, Zhang Lin^c, Min Liu^{a,*}

^a Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, P. R. China

^b School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China

^c School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, P. R. China

*Corresponding author. E-mail address: minliu@csu.edu.cn (Min Liu)

Figure. S1 The adsorption energy of CF_4 doped with different elements at the $1Al_{3C}$ site. The red dotted line is the CF_4 adsorption energy of the pure Al_2O_3 at the $1Al_{3C}$ site.

Figure. S2 The adsorption energy of CF_4 doped with different elements at the $2Al_{4C}$ site but with the active center at $1Al_{3C}$. The red dotted line is the CF_4 adsorption energy of the pure Al_2O_3 at the $1Al_{3C}$ site.

Figure. S3 Molecular dynamics stability of pure Al₂O₃ at 650 °C calculated by AIMD simulation.

Figure. S4 Molecular dynamics stability of $Zr-Al_2O_3$ at 650C calculated by AIMD simulation for the best active site (3Al_{4C}).

Figure. S5 Molecular dynamics stability of $Hf-Al_2O_3$ at 650C calculated by AIMD simulation for the best active site ($3Al_{4C}$).

Figure S6. The activation energy barrier for the decomposition of CF_4 to $F+CF_3$ at the $1Al_{3C}$ site on the pure Al_2O_3 surface.

Reaction path

Figure S7. The activation energy barrier for the decomposition of CF_4 to $F+CF_3$ at the Zr site (3Al_{4C}) on the Zr-Al₂O₃ surface.

Figure S8. The activation energy barrier for the decomposition of CF_4 to $F+CF_3$ at the Hf site ($3Al_{4C}$) on the Hf- Al_2O_3 surface.

Figure. S9 The formation energy of different metal dopings at the $1Al_{3c}$ site.

Figure. S10 The formation energy of different metal dopings at the $2Al_{4c}$ site.

Figure. S11 The formation energy of different metal dopings at the $3Al_{4c}$ site.

Site	С	F1	F2	F3	F4	CF ₄
$Al(2Al_{4c})$	1.595	7.599	7.610	7.601	7.611	32.016
$Zr(2Al_{4c})$	1.634	7.575	7.583	7.581	7.609	31.981
$Hf(2Al_{4c})$	1.590	7.572	7.637	7.580	7.584	31.962
$Al(3Al_{4c})$	1.600	7.599	7.612	7.601	7.606	32.018
$Zr(3Al_{4c})$	1.621	7.565	7.614	7.588	7.592	31.981
$Hf(3Al_{4c})$	1.622	7.567	7.601	7.579	7.590	31.959

Table. S1 Bader charge analysis of the C atom, different F atoms, and CF_4 molecule. F4 is the F atom closest to the adsorption site.

Figure. S12 TEM images of nanosheet morphology for Al₂O₃, Zr-Al₂O₃, Hf-Al₂O₃ catalysts

Figure. S13 X-ray photo electron spectroscopy (XPS) spectra of catalysts. (a) Al 2p of fresh. (b) Zr 3d of fresh. (c) Hf 4f of fresh.

Figure. S14 XPS spectra of O 1s for Al₂O₃, Zr-Al₂O₃, Hf-Al₂O₃ catalysts.

Fig. S15 (a) N_2 adsorption-desorption curve and (b) pore diameter distribution of Al_2O_3 , Zr- Al_2O_3 and Hf- Al_2O_3 catalysts.

Table 2. BET results of Al_2O_3 , Zr- Al_2O_3 and Hf- A_2O_3 catalysts.

Sample	SA (m ² g ⁻ 1)	PV (cm ³ g ⁻ 1)	APR (nm)
Al ₂ O ₃	136.7	0.49	11.9
Zr-Al ₂ O ₃	53.12	0.38	5.69
Hf-Al ₂ O ₃	86.96	0.42	9.76