Prospects of 2D graphene nanomaterials in plant-based agriculture and their fate in terrestrial soils: A critical review

Partho Das^{1,3}, C. Ryan Penton², Paul Westerhoff¹ and François Perreault^{1,4*}

 ¹School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ.
 ²College of Integrative Sciences and Arts, Faculty of Science and Mathematics, Arizona State University, Mesa, AZ, USA.
 ³Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
 ⁴Department of Chemistry, University of Quebec in Montreal, Montreal, QC, Canada

*Corresponding author: perreault.francois@uqam.ca

ltem	Pages
Supplementary Table: S.1	2-11
Supplementary Table: S.2	12-20
Supplementary Table: S.3	21-28
References	28-37

Table S.1: Impacts of graphene on soil biocomponents (microbes, fungi, algae, earthworms, nematodes, arthropods, mites)

	Table S.1.1: Impacts of graphene on microbes							
	Positive impacts							
Typ e of gra phe ne	Appl icati on dose	Ex po sur e Ti me	What was assessed?	Expe rime ntal matri x/sy stem	Major findings	Ref ere nce		
GO	10 and 100 mg/L	4 h to1 0 d	Impact on nitrifying capability and nitrous oxide generation and mechanism	Activ ated sludg e	 -After short exposure of 4h: No impact on nitrifying capability. -After long exposure of 10 ds: Nitrifying capability was altered due to lower EPS contents and bacterial abundance. 	(1)		
GO, rGO	_	0 to 7 d	Impacts of graphene on biological nitrogen removal	Sedi ment	 The nitrogen removal was enhanced (125%) due to the intensification of the interaction on the microbial community between stochastic assembly and deterministic assembly. The high electron transfer efficiency and higher denitrifying enzyme activities (NAR, NIR, NOS, NOZ) were achieved. 	(2)		
Micr ogra phit e	40 to 200 mg/L	8hr	Denitrification in synthetic and industrial wastewater	Wast ewat er	-Denitrification rate was increased. -The abundance of denitrifying bacteria and <i>nirS</i> gene abundance increased significantly due to MGPs.	(3)		

rGO	10– 500 mg/L	1 to 14 d	Impact of rGO on nitrogen-fixing bacterium Azotobacter chroococcum	Cultu re medi a	 -rGO promoted nitrogen fixation activity of A. chroococcum at 0.5 mg/mL. -rGO increased soil nitrogen contents; 30% increase of organic nitrogen occurred at 0.5 mg/mL 	(4)
rGO	50 to 200 mg/L	4hr	Impact of GO on annamox bacteria biomass and enzyme activities	Cultu re medi a	-100 mg/L rGO enhanced the total nitrogen removal rate of 17.2%. -HDH, NIR, NAR activities were enhanced with different dose rGO.	(5)
GO	25 mg/L	16 hr	Impact of GO on bacterial and mammalian cell	Cultu re medi a	 -GO acts as a general enhancer of cellular growth by increasing cell attachment and proliferation. -GO does not have intrinsic antibacterial, bacteriostatic, and cytotoxic properties in both bacteria and mammalian cells. 	(6)
nG O- PE Gs	20 mg/L	2hr	Impact on <i>E. coli</i>	Cultu re medi a	-DNA synthesis and extracellular polymeric substance (EPS) secretion was increased. -nGO-PEG (1:1) treatment could remarkably enhance (up to 6-fold) recombinant protein production in engineered bacteria cells.	(7)
GO	200 mg/L	24 to 72 hr	Biodegradation of GO by bacteria in anaerobic condition	Cultu re medi a	-GO can act as terminal electron acceptor for heterotrophic, metal- reducing, and environmental bacteria. -In anaerobic condition, bacteria can transform GO by bacterial respiration and glycolysis process.	(8)
GO	150 g/L	24 hr	Biodegradation of GO by Shewanella	Cultu re medi a	-Reduction of GO by respiration of Shewanella can takes place in an aerobic condition. -Extracellular electron transfer (EET) pathways played a key role in the reduction of GO.	(9)
GO	800 mg/L	40 hr	Biodegradation of GO by Shewanella	Cultu re medi a	-GO reduction by S. oneidensis is catalyzed primarily by the Mtr respiratory pathway	(10)
GO, rGO	0.5 to 500	48 hr	Impact of GO and rGO on biofilm formation	Cultu re medi	-GO proliferated cell growth, biofilm formation, and biofilm development even at a concentration of 500 mg/L. -rGO imposes oxidative stress on biofilm formation.	(11)

	mg/L			а		
GO	50- 100 mg/L	42 hr	Impact of GO on annamox activity	Cultu re medi a	-GO enhanced the activity of anammox bacteria in a dose-dependent manner. GO can stimulate the increase of EPS. -GO can be used as a scaffold for anammox bacteria attachment.	(12)
GO	0– 150 mg/L	42 hr	Impact of GO anammox bacteria	Colu mn react or	-GO can act as biocompatible site for <i>E. Coli</i> adsorption and followed by proliferation in the nanomaterial surface.	(13)
rGO	280 mg/L	HR T: 2 d	Nitrogen removal (by Annamox process) and microbial community change.	Batc h react or	-The effect of the temperature drop on the nitrogen removal rate was reduced for biomass entrapped in SA and SA-rGO gel beads. -microbial community composition and relative gene abundance changed significantly.	(14)
Gra phit e, GO, rGO	500 mg/L	14 d	Impact of naphthalene- degrading bacteria to oxidize graphitic materials	Elect roch emic al test	 -rGO had higher degree of oxidation compared to graphite. -GO oxidized by bacteria and breaks into small pieces -Contact between bacteria and graphitic materials accelerates electron transfer. 	(15)
					Negative impacts	
Typ e of gra phe ne	Appl icati on dose	Ex po sur e tim e	Microbe/ Fungi/ Algae/ Gene abundance/commu nity sequencing/ Enzyme activity	Expe rime ntal matri x	Major findings	Ref ere nce s
GO	5– 500 mg/L	24 h to 14	Impact of GO on nitrogen-fixing bacterium	Cultu re medi	-The toxicity of GO to A. chroococcum at high concentration was assigned to the cell wall wreck and oxidative stress. -In soil, GO showed alleviated toxicity compared to culture media	(16)

		d		а	and soil nitrogen contents slightly increased at high concentrations.	
Gra phit e	0.5 mg/L	3h	Impacts of graphite on nitrifying bacteria and microbial community.	Activ ated sludg e	-The nitrification efficiency decreased significantly after dosing with GNPsGNPs led to EPS breakage from bacterial cells and decreased the quantity of total viable bacteria after dosing.	(17)
GO and rGO	1 to 500 mg/L	3h	Impact of different degrees of reduction of GO on its antimicrobial effect on <i>E. Coli.</i>	0.9% NaCl	-Antibacterial effects of GO increases when GO is thermally reduced (at high C:O ratio). The EC_{50} for pristine GO and thermally annealed GO at 200, 500, and 800 degrees are 183, 143, 127, and 86 µg/mL respectively. -The mechanism of inhibition of cell growth is adsorption of bacterial cells on GO	(18, 19)
GO and rGO	Х	1h	Toxicity of GO and rGO nanowalls on <i>E. coli</i> and <i>S. aureus</i>	Salin e soluti on	 Overall, graphene nano wall is significantly more toxic to microorganisms without a membrane structure than microorganisms with membrane structure. -GO-nano- sheets showed 60% and 70% cell viability decrease in Escherichia coli and Staphylococcus aureus, respectively. -rGONWs (GONWs reduced by hydrazine) exhibited more antibacterial activity as compared to the unreduced GONWs. 	(20)
GO and GO nan oco mpo site	10 to 1000 mg/L	3hr	Antibacterial effects of PVK-GO on two Gram-negative bacteria: <i>E. Coli, C.</i> <i>metallidurans</i> and gram-positive bacteria: <i>B. subtilis</i> and <i>R. opacus</i>	Cultu re medi a	-Nanocomposite PVK–GO has been demonstrated to have higher antimicrobial effects than GO alone, with 97% lower concentrations than the pure nano- material.	(21)
Gra phit e, GtO	40 mg/L	2hr	Antibacterial activity on <i>E. Coli</i>	Isoto nic salin e	 -Antibacterial activity of graphene is time and concentration dependent. -Antimicrobial actions are contributed by both membrane and oxidation stress. 	(22)

, GO, rGO				soluti on	-rGO and Gt have higher oxidation capacities than insulating GO and GtO.	
GO	10 to 500 mg/L	2hr	Impact on phytopathogenic bacteria (P. syringae and X. campestris pv. undulosa	LB Agar	-GO mechanically wrapped and locally damaged the cell membrane and finally caused cell lysis.	(23)
			Table	e S.1.2	: Impacts of graphene on Fungi	
Typ e of gra phe ne	Appl icati on dose	Ex po sur e Ti me	Microbe/ Fungi/ Algae/ Gene abundance/commu nity sequencing/ Enzyme activity	Expe rime ntal matri x	Major findings	Ref ere nce s
GO	50 to 500 mg/L	7 d	Antifungal Activity of GO against <i>B.</i> <i>sorokiniana</i> In Vitro and In Vivo	PDA medi um	 -Appropriate GO dose can exhibit excellent antifungal properties on B. sorokiniana both in vitro and in vivo. -Anti-fungal effect of GO caused by destruction of cell membrane. 	(24)
GO	GO and fungi cide ratio: 1:9 to 9:1	120 h, 7 d	Synergistic antifungal activity of GO against Fusarium graminearum	PD medi um and field trial	-GO synergistically inhibits F. graminearum in vitro and in vivo -magnitude of synergy depending on the ratio of GO and fungicide.	(25)

GN P	160, 800 mg/L	2,4, 24 hr	Impact of polycarboxylate functionalized graphene nanoplatelet on Saccharomyces cerevisiae	YPD medi um	 oxidative stress induced at a lower concentration (160 mg L-1), after short exposure periods (2 and 4 hours). cell proliferation was not negatively affected even in the presence of 800 mg L-1 of the nanomaterial for 24 hours. 	(26
Gra phe ne, GO	10 and 200 mg/L	10 d	Impact of G and GO on <i>Aspergillus niger</i> and <i>Aspergillus</i> <i>flavus</i>	Czap ek liquid medi a	 -G and GO showed antifungal properties toward A. niger and A. flavus - G and GO caused growth inhibition, apoptotic-like cell death responses and changes in VOC and enzymatic production. 	(27)
Gra phe ne, GO	30 mg/L	2 to 18 d	Impact of graphene, and oxidized graphene on extracellular enzymes activities of a fungal strain (Cladosporium sp.)	Cultu re medi a	 Stimulated extracellular enzyme activity. Extracellular enzymes were adsorbed by CNMs to a considerable extent. G and GO electron conductors to enhance extracellular direct electron 	(28)
rGO	0.25 to 4 mg/ mL	14 d	Impact of rGO on the growth, structure and decomposition activity of white-rot fungus <i>P.</i> <i>chrysosporium</i>	Cultu re medi a	-rGO had no significant influence on the decomposition activity of white-rot fungus.	(29)
GO	25 to 600 mg/L	24 hr	Taxological effect of GO on Saccharomyces cerevisiae	YPD medi um	-Cell proliferation was inhibited and the IC ₅₀ value was 353 mg L-1.	(30)
GO and GO- Fe3	50 to 500 mg/L	7 d	Antifungal activity of GO against Plasmopara viticola	Petri dish	-GO-Fe ₃ O ₄ at 250 μg mL-1 could significantly depress the disease severity of downy mildew. -High dosage of GO-Fe ₃ O ₄ (1000 μgmL-1) had no phytotoxic effect on plant leaves.	(31)

O4						
GO	0.1 to 4 mg/ mL	14 d	Impact on white rot fungus (WRF) <i>Phanerochaete</i> <i>chrysosporium</i>	Fung al cultur e medi a	 -Low concentrations of GO stimulated the growth of P. chrysosporium. -At high concentration, inhibition of weight gain and loss of ordinary morphologies/ultrastructures were observed. 	(32
GO, rGO	62.5 to 500 μg/m L	72 h and 120 h	Impact on plant pathogenic fungi (<i>F.</i> <i>graminearum</i> and F. <i>poae)</i>	PDA	-Both GO and rGO exhibit strong antifungal activity against <i>F. graminearum</i> and <i>F. poae</i>	(33)
GO	10 to 500 mg/L	5h, 7h	Impact on phytopathogenic fungus (F. graminearum and F. oxysporum)	PDA	-Spore germination inhibition or deformed germination action was GO concentration dependent. -Antifungal activity caused by damaging cell membrane integrity,	(23
rGO	1 to 500 μg/m L	7 d	Antifungal activity of rGO nanosheets against three fungi i.e., Aspergillus niger Aspergillus oryzae and Fusarium oxysporum	PDA	-IC ₅₀ values of rGO nanosheets against <i>F. oxysporum, A. niger, and A. oryzae</i> are 50, 100, and 100 μg per mL, respectively.	(34)
GO	62.5 to 500 mg/L	5 d	Antifungal activity of GO	PDB; CMC medi a	- GO significantly reduced the mycelial biomass and branching of FG strain PH-1.	(35)
			Table	e S.1.3	: Impacts of graphene on Algae	

Typ e of gra phe ne	Appl icati on dose	Ex po sur e Ti me	Microbe/ Fungi/ Algae/ Gene abundance/commu nity sequencing/ Enzyme activity	Expe rime ntal matri x	Major findings	Ref ere nce s
GO and	1 to	96 hr	Impact of surface	Bold's Basal	-Chlorophyll (Chl a) based EC_{50} measurement showed for M.	(19
rGO	mg/L		its antimicrobial	Medi	toxic.	/
			effect on algae (S.	um (B	-For S. obliquus, EC_{50} estimation was not possible due to no change	
			<i>obliquus</i>) and cyanobacteria (<i>M</i> .		in biomass for any of the tested condition of thermally reduced GO.	
			aeruginosa)			
GO	1 to	96	Toxicity mechanism	Bold'	-GO didn't cause any oxidative stress or membrane damage but	(36
and	100	nr	of GO on M.	S	Indirect toxicity was caused by physical mechanisms associated)
IGO	mg/L		aeruginosa			
				Medi		
				um (
				BBM		
)		(0.7
GO	0.39	24	I oxicity of GO		-Cyanobacterium exhibited more GO sensitivity and more rapid	(37
			iowards <i>Raphidocells</i>	meai	growin inhibition than the algae.)
	200	1 Z	Subcapitata and	um	- Toxicity of GO caused by snading/aggregation of GOs and nutrient	
	mg/L		elongatus			

GO, rGO , Gra phe ne	50 mg/L	96 hr	Toxicity of GO, rGO, and MG to <i>Chlorella</i> <i>pyrenoidesa</i> based on their different physicochemical properties and colloidal behaviors	Algal medi um	-96-h EC ₅₀ values of GO, rGO, and MG to Chlorella pyrenoidosa was estimated as 37, 34, and 62 mg/L, respectively -GO caused shading effect, oxidative stress-induced membrane damage, and nutrient depletion whereas rGO and MG didn't show any shading effect.	(38)
rGO	10 to 300 mg/L	24 to 96 hr	Toxicity of rGO on Scenedesmus obliquus	HB-4 cultur e medi um	 -rGO induces dose-dependent cytotoxic effects on algal growth. -rGO produced extracellular surface coating and intracellular morphological changes. -Cell wall and cellular membrane integrity were lost after treatment. 	(39)
GO	0.01 -10 mg/L	96 hr	Nanotoxicity of GO on <i>Chlorella vulgaris</i>	BG- 11 medi um	 The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS. SWCNT was reported more toxic compared to GO. 	(40)
GO	0.01 to 10.0 mg/L	96 hr	Impact of different sized GO on <i>Chlorella vulgaris</i>	BG- 11 medi um	- GOQD (size: 20-50 nm) induced more obvious biological effects than GONS (size: 1–5 μm), including cellular uptake, cell division, cell permeability, and oxidative stress.	(41)
			Table S.1.4: Impa	acts of	f graphene on soil earthworms, nematodes	
Gra phe ne	0.3 to 3 g/kg	7 d	Metabolic response of earthworms (Eisenia fetida) to graphene exposure	Soil	 -No concentration-dependent metabolic response for the 7-d experiment. - All the 12 examined metabolites of earthworms were significantly changed after graphene exposure. 	(42

Mult ilaye r grap hen e, ML G	0.2% and 1%	28 d	Impact of three different multi-layer graphene on earthworms (Eisenia fetida)	Soil	 Earthworms avoided smaller and more hydrophilic MLG. Larger and more hydrophobic MLG exerted a higher oxidative stress. Smaller and more hydrophilic MLGs had a negative effect on survival and mitochondrial activity of coelomocytes. 	(43)
GO	5 to 30 g/kg	7 to 28 d	Toxicity of GO on earthworms (Eisenia fetida).	Soil	- GO can induce oxidative stress and genotoxicity in earthworm that caused lipid peroxidation, decreased lysosomal membrane stability and DNA damage.	(44)
GO	5 to 30 g/kg	28 and 56 d	Impact of GO on the growth, survival, reproduction, and ultrastructure of earthworms (Eisenia fetida).	Soil; Filter pape r	-Earthworm growth was significantly inhibited with increasing GO concentrations and exposure ds. -GO exposure significantly decreased the reproductive capacity.	(45)
FLG	100 to 1000 mg/L	1 to 48 h	Uptake of FLG by fresh water worm Limnodrilus hoffmeisteri was examined	Wate r	 Protein-coated FLG had higher uptake compared to the non- modified FLG FLG got coated and altered in size distribution by L. hoffmeisteri secreted proteins 	(46)
rGO	0.1– 15.7 μg/c m ² ; 100 to	48 hr; 28 d	Impact of rGO on Eisenia fetida	Filter pape r; Soil	-rGO caused no acute toxicity but a significant weight loss which may be due to metabolism interference.	(47)

	1000					
	mg/k					
	g					
Gra	1%	130	Impact of graphene,	Soil	- Addition of graphene resulted in a community with a higher plant-	(48
phe	(wt	d	GO on the		parasitic index.)
ne,	basis		abundance and		-Presence of graphene and GO increased the numbers of	
GO)		diversity of soil		bacterivores, and graphene benefited fungivores.	
			nematodes		-GO decreased the values of nematode community parameters,	
					e.g., diversity, species richness, and structure index.	
Cro	1 a/1	120	Impact of C and CO	- Soil	Both graphana and CO increased the abundances of multiple	(40
					1	
Gra	1g/1	130	Impact of G and GO	Soil	- Both graphene and GO increased the abundances of multiple	(49
phe	00 g	d	on microarthropods		trophic functional groups, including predators, detritivores,)
ne,	soil		in turfgrass soil		herbivores and fungivores.	
GO					- Total taxonomic richness, Shannon diversity index, and dominance	
					index of the microarthropod community increased, but evenness	
					index decreased.	
GO	x	X	Synergistic mortality	X	- GO can serve as a carrier of pesticides to be adsorbed on the	(50
			effects between		surface of mites and improve the dispersibility and utilization)
			nesticides and CO		efficiency of pesticides	
1			pesticides and GO		enciency of pesticides.	
			against <i>T. truncatus</i>		- GO-pesticide complex increased the adhesion of pesticides on the	

Type of grap hene	Applic ation dose	Pla nt gro wth Tim e (or exp osu re time)	Experim ental system	Plant type	Type of stress/ Challen ge	Major findings	Refe renc e			
	Positive impacts									
Grap hene	0.5%, 1% and 2% (w/w)	40 d	Soil applicati on	Alfalfa	Salinity and alkalinit y stress	Fresh weight and dry weight of leaves increase at lower dose (0.5%) and decrease in higher dose (1%, 2%).	(51)			
GO	100 mg/L (irrigati on)	3 d	Soil applicati on	Paeonia ostii	Drought stress	Prevented soil water evaporation. Lowered increase in ROS generation and increased antioxidant enzyme activity. Caused higher photosynthesis, intact mesophyll cells and organelles and open stomata. No accumulation in P. ostii	(52)			
Grap hene	50 to 200 mg/L or mg/kg	1 to 4 wee ks	Agar; Soil applicati on	Cathara nthus and cotton	Salinity stress; Drought stress	Increased early flowering. Increased total flowering. Increased the plant survival decreased leaf wilting in drought condition.	(53)			

GO, Methi onine -GO and Iysin e-GO	20 mg/L	165 d	Foliar applicati on	Pearl millet (Pennise tum glaucum L.)	Salinity stress	Increased plant growth, biomass accumulation, total protein content, photosynthetic pigment content, and yield.	(54)
Grap hene	50 to 200 mg/L	4 wee ks (3 appl icati on)	Growth media; Soil applicati on	Sorghu m and switchgr ass	Salinity stress	Increased seed germination. Increased total biomass production. Reduced salt stress effect on seed germination.	(55)
Grap hene	25, to 150 g/ kg	30 d	Soil applicati on	Maize	Plant growth, soil physioc hemical parame ter, nutrient content	Increased soil aggregate size. Increased soil available nutrient content. Improved nutrient absorption by maze plant. Enhanced plant biomass.	(56)
GO	50 to100 g/kg	-	Soil applicati on	Grape vine	Salinity stress	Improved MDA, TSS, and chlorophyll a content. Improved antioxidant enzymes activity, osmolytes, and the mineral nutrients balance.	(57)
GO	150 to 450 mg/L	4 wee ks	Culture media	Lepidiu m sativum L. Calli	Salinity stress	Improved the production of target secondary metabolites. Reduced salt stress by accumulation of phenolics and PAL activity.	(58)
GO	12.5 to 50 mg/L	180 d	Soil applicati on	Red pine (Pinus	Root growth	Increased the root length, root projected area, root surface area, root volume, root tip number and root fork number	(59)

				tabulifor mis Carr.)			
GO	100 to 800 mg/L	49 d	Culture media	Plantago major L. calli	Drought stress	Decreased the adverse effects of drought stress by enhanced proline content and decreased H_2O_2 level.	(60)
GO	0.1 to 10 mg/L	24 to 30 d	MS nutrient medium; Stem applicati on	Waterm elon and A. thaliana L.	Plant growth; Fruit ripening	Increased A. thaliana root length, leaf area and number, and formation of flower buds. Increased the perimeter and sugar content in watermelons.	(61)
Grap hene	40 mg/L	4 d	DI water	Tomato	Seed germina tion	Faster seed germination. Increased length of seedling stems and roots.	(62)
GO	50, 200 mg/L	40 to 45 d	Soil applicati on	Spinach, Chive	Seed germina tion	Higher water retention in soil Accelerated seed germination due to transport of water by hydrophobic sp2 domains of GO No phytotoxic as no translocation in plant cell	(63)
FLG	50 to 100 mg/L	30 d	MS medium	Tomato	Seed germina tion	Enhanced seed germination	(64)
Grap hene ribbo n	200 mg/L	5 d	Water	Wheat (Triticum aestivu m L.)	Seed germina tion	Increased seed germination of aged seed. Enhanced resistance to oxidative stress.	(65)
Singl e bilay er GO	100 to 1600 mg/L	_	hydropo nic culture	Faba Bean	Seed germina tion	Dose dependent positive and negative effect. Increased seed germination and root elongation.	(66,6 7)

GO	0.1 to	40 d	Culture	Gala	Root	Improved root formation but impaired root elongation.	(68)
	10		medium	apple	formatio		
	mg/L				n and		
					growth		
Grap	12.5 to	6	Soil	Pinus	Root	Increased root fresh weight and root dry weight.	(59)
hene	50	mon	applicati	tabulifor	growth		
	mg/L	ths	on	mis			
				Carr.			
GO	10 to	4	Soil	Aloe	Plant	Increased photo synthetic capacity and nutrient content (protein and	(69)
	100	mon	applicati	vera L.	growth	amino acid) of leaf.	
	mg/L	ths	on			Increased the yield and morphology of root and leaf.	
						Do not alter production of bioactive compound aloin.	
Grap	20 to	30 d	Soil	Zea	Root	Increased total root length, root volume, and the number of root tips	(70)
hene	100		applicati	mays L.	develop	and forks	
	mg/L		on		ment		
GO;	125 to	9 d	Hydropo	Wheat	Seed	GO inhibited the germination, and $G-NH_2$ enhanced.	(71)
Amin	2000		nic		germina	GO restrained seedling growth but $G-NH_2$ enhanced seedling growth.	
е	mg/L				tion and	GO or G-NH ₂ did not aggregate in the root cells.	
functi	Ũ				seedlin		
onali					g		
zed					growth		
GO							
Grap	200	3 h	Water	Coriand	Seedlin	Enhanced growth rate (e.g., leave length, root length or weight, shoots,	(72)
hene	mg/L			er and	g	flowers and fruits) of coriander and garlic plants	
quan				garlic	growth		
tum							
dots							
IAA	25	7 d;	Filter	Maize	Seedlin	Enhanced root length, shoot length, and plant biomass.	(73)
loade	mg/L	14 d	paper		g		
d					growth		
rGO							

GO	50 to	14 d	Culturin	Wheat	Seedlin	Low concentration (100 mg/L) promoted root growth.	(74)
	1000		g		g	High concentration (1000 mg/L) inhibited root growth due to oxidative	
	mg/L		solution		growth	stress.	
GO	5.5 to	3h;	Flower	Zucchini	Sexual	Airborne deposition of GO on stigma of <i>C. pepo</i> do not alter	(75)
	22 ua	4 d	applicati	(reprodu	reproduction for a dose upto 11.1 ± 3.6 ng mm ⁻² .	
	mm ⁻²		on	Cucurbit	ction:		
				а реро	Seedlin		
				L.)	a		
				,	growth		
GO	20 to	16	Liquid	Tomato	Root	Improved shoot/stem growth by increasing the cortical cells number.	(76)
	50	hr.	м́s		develop	cross-sectional area. diameter, and vascular-column area.	
	ma/L:	30 d	media:		ment in		
	50 to		peat		seedlin	GO induced the expression of root development-related genes (SIExt1	
	200		moss		gs and	and LeCTR1).	
	mg/L				mature	,	
	0				plant		
Grap	10 to	60 d	Foliar;	Tomato	Biotic	Increased fresh and dry root weight.	(77)
hene	1000		Drench		and	Improved antioxidant response of seedlings.	
	mg/L		applicati		Abiotic		
	Ū		on		stress		
GO	125 to	10 d	Culture	Lentil	Root-rot	GO inhibited growth of <i>M. incognita</i> and <i>M. phaseolina</i>	(78)
	500		medium;		fungus		
	ppm		Soil		and		
			applicati		root-		
			on		knot		
					nemato		
					de		
					disease		
					s		

GNP	1000 mg/kg	39 d	Sandy Ioam soil; Soil applicati on	Soybean	Heat stress and Insect stress	GNP increased the leaf chlorophyll a/b ratio and leaf lipid peroxidation.	(79)
GO- Ag	3.91 to 7.81 mg/L	5 d	In vitro and in vivo	Wheat seed	Pathog enic Fungi stress	Enhanced antimicrobial activity compared to the pure AgNPs and GO which was caused by physical damage and oxidative stress. Decreased leaf spot disease infected by <i>F. graminearum</i>	(80)
GO	30 mg/L	4 wee ks	Hydropo nic; Foliar applicati on	Lettuce	Heavy metal stress	Decreased cadmium stress. Increased net photosynthetic rates, stomatal conductance, transpiration rates, chlorophyll content, primary maximum photochemical efficiency of photosystem II, actual quantum yield, photosynthetic electron transport rates, ribulose-1,5-bisphosphate carboxylase and oxygenase concentrations, and biomass Reduced the accumulation of the reactive oxygen species and H ₂ O ₂ , malondialdehyde content, and the activity of antioxidant enzymes.	(81)
GO	30 and 60 mg/L	28 d	Hydropo nic; Foliar applicati on	Lettuce	Heavy metal stress	Increased lettuce root growth. Decreased the bioaccumulation of Cd in the roots and leaves. Attenuated Cd-related cell damage. Improved lettuce quality (increased content of soluble sugars, proteins, and vitamin C).	(82)
GO	1 to 80 mg/L	3 d	Filter paper/P etri dish	Lepidiu m sativum L.	Heavy metal stress	GO adsorb metal mixture from growth medium and thus altered heavy metals accumulation in root and shoot.	(83)

Sulfo nate d grap hene oxide (SG O)	50 to 500 mg/L	72 h	SGO applied in culture media	Wheat	Nitrate Stress (NS) or Ammon ium stress (AS)	Increased antioxidant activity and gas exchange parameters.	(84)
Sulfo nate d grap hene oxide (SG O)	50 to 500 mg/L	72 h	SGO applied in culture media	Wheat	Nitrate or Ammon ium stress	Improved structural stability, efficiency, and photochemical reaction of PSI and PSII impaired by nitrate stress or ammonium stress in wheat chloroplasts.	(85)
rGO- CuO	1 to 100 mg/L	70 d	In vitro growth assays; Seedling applicati on	Tomato and Peeper	Pathog enic Fungi stress	rGO-CuO exhibited superior and long-lasting antifungal activity. Improved flowering, plant height, dry weight, accumulation of photosynthetic pigments.	(86)
GNA	3g GNA per kg fertilize r	7-8 wee ks	Soil applicati on	Lettuce	Nitrate leachin g and Yield	Reduced nitrate leaching. Improved yield	(87)
Grap hene	25 to 500 mg/L	30, 40, or 50 d	Soil applicati on	Changb ai larch (Larix olgensis A. Henry)	Oxidativ e stress	Low dose of graphene increased root length, surface area, volume, and average diameter increased. At 30 ds incubation organic matter, hydrolytic nitrogen, and available phosphorus and potassium contents of soil.	(88)

						Negative impacts	
Type of grap hene	Applic ation dose	Exp osu re time	Experim ental system	Plant type	Proble m caused	Major findings	Refe renc es
GO, rGO	5 to 250 mg/L	21 d	Nutrient growth solution (Hoagla nd solution)	Rice (Oryza sativa L.)	Toxicity	GO reduced shoot biomass and elongation (at 100 and 250 mg/L). rGO showed no impact on root and shoot development.	(89)
GO	40 to 2000 mg/L	7 to 15 d	Nutrient growth solution (Hoagla nd solution)	Wheat	Toxicity and Bioaccu mulatio n	Accumulation of GO in root. Hindered development of wheat plants. Disrupted root structure, cellular ultrastructure and promoted oxidative stress.	(90)
GO	40 to 2000 mg/L	15 d	Hydropo nic and soil applicati on	Naked oats (Avena sativa L.)	Toxicity	Induced growth inhibition, photosynthesis disturbance and morphological changes in hydroponic culture. Lower toxicity of GO in soil culture.	(91)
GO	0.5 to 25 mg/L	10 d	Water	Brassica napus L.	Oxidativ e stress	Inhibited root length and number of adventitious roots.	(92)
GO	0.5 to 25 mg/L	10 d	Water	Brassica napus L.	Affecte d plant growth	Affected the morphology and endogenous phytohormone contents of seedlings.	(93)
GO	5 to 100 mg/L	15 d	Water	Brassica napus L.	Affecte d root develop	Decreased root length (for 25 to 100 mg/L). Decreased root fresh weight (for 50 to 100 mg/L). No significant effect on the Malondialdehyde (MDA) content.	(94)

					ment		
GO	40 to 4000 mg/L	28 d	White moss incubate d in GO	White moss Leucobr yum glaucum	Toxicity	GO suppressed chlorophyll contents and thus photosynthesis. At high concentration GO disturbed the microstructure and ultrastructure. GO decreased glutathione levels and catalase activities.	(95)
GO	0.2%, 0.4% and 0.6%	50 & 100 d	Soil applicati on	White clover (Trifoliu m repens L.)	Toxicity	GO (at higher concentration and exposure time) decreased seedling growth, photosynthetic parameters, and nutrient uptake in shoots.	(96)
GO	0.2%, 0.4% and 0.6%	100 d	Soil applicati on	Alfalfa		Low concentration (0.2%) of GO promotes root growth. High concentration (0.4% and 0.6%) of GO damaged root structured and nutrient uptake.	(97)
GO	5 mg/L	15 d	Hydropo nic system	Rice	Oxidativ e stress	Cellular structures damage, GO deposition and oxidative stress was observed in rice root. Richness, evenness and diversity, relative abundance of endophytic bacterial communities of rice root decreased.	(98)
GO	500 to 2000 mg/L	2 and 7 d	Petri dish	Wheat	Oxidativ e stress	Low dose exposure exhibited higher antioxidant enzyme activity (CAT, POD, and SOD). Free radical scavenging activity of polyphenolic compounds were increased.	(99)
rGO	50 to 500 mg/kg	30 d	Soil applicati on	Rice	Toxicity	Phytohormones (indoleacetic acid, brassinosteroid and gibberellin acid 4) in rice roots increased at high GO dose.	(100)

GO, GOQ Ds, rGO	0.5 to 50 mg/kg	-	Injection to plant stem	Wheat	Translo cation from stems to grains	Decreased the globulin, prolamin, amylose and amylopectin content. Decreased the levels of mineral elements and upregulated the soluble sugar content.	(101)
GO, GOQ Ds, rGO	0.25 to 25 mg/kg	42 d	Injection to plant stem	Pepper	Phytoto xicity	Main mechanism involved in phytotoxicity is downregulation of carbohydrate metabolism. rGO and GOQD poses higher oxidative stress than GO.	(102)
GO, rGO	40 to 2000 mg/L	4d	Nutrient growth solution	Pea seedling	Translo cation of root to leaf	rGO translocated in leaves and inhibited photosynthesis. GO had no effect on photosynthesis as it was restricted to plant root.	(103)
GO	10 to 800 mg/L	14 d	Nutrient growth solution	Wheat seedling	Suppre ssed nitrate uptake by root	Decreased root uptake area and root activity and thus suppressed the nitrate uptake rate.	(104)
FLG, GO, rGO	1 to 100 mg/L	3, 5.5 h	In vitro	Corylus avellana L.	Sexual reprodu ction of seed plants	FLG and GO may influence pollen germination (FLG) and pollen tube growth (GO). No negative impacts by rGO.	(105)
Grap hene	40 to 80 mg/L	72 h	Growth medium	Arabido psis thaliana	Toxicity	Caused fragmented nuclei, membrane damage, mitochondrial dysfunction, increase of ROS. Caused translocation of graphene into cells.	(106)

Grap	500 to	20 d	Nutrient	Cabbag	Phytoto	Graphene inhibited plant growth and biomass in a dose dependent	(107)
hene	2000		growth	e,	xicity to	manner.	
	mg/L		solution	tomato,	seedlin	Induced oxidative stress on cabbage, tomato, and red spinach.	
				red	gs	Less significant toxic effect was observed for lettuce seedlings.	
				spinach,			
				and			
				lettuce			

Table S.3: Transport of GNMs in porous media

Graphene type	Transpor t medium	What was assessed?	Experimental condition	Major outcomes	Ref ere nce
GO (300 to 800 nm)	Quartz Sand (0.21–0.30 mm)	Deposition & remobilization of GO particles within saturated sand packs as a function of ionic strength	Saturated glass columns (2.5 cm dia and 15 cm length) IS: 1,5,20,100 mM (NaCl)	 The transport behavior of GO in saturated sand packs could be described by a Langmuir-type model. GO particles displayed high mobility at low IS condition and high immobilization at high IS. GO retention is reversible. 	(108)

GO (avg. square root surface area of 179.3 \pm 111.5 nm and average height of 0.86 \pm 0.21 nm)	Quartz Sand (0.25 to 0.30 mm)	Effects of solution chemistry on transport of GO.	Saturated borosilicate glass column (dia: 1.5 cm and length:5 cm) IS: 1 to 100 mM (KCI)	-Transport of GO is IS dependent. At 10 and 100 mM KCl, around 7% and 95% of the GO were deposited (in the first cm of column) respectively.	(109)
GO (1–5 μm dia)	Quartz Sand (0.5–0.6 mm)	Deposition mechanisms of GO particles in porous media with various combinations of moisture content and IS.	Saturated acrylic column (2.5 cm in dia and 16.5 cm length) IS: 1, 10 or 100 mM (NaCl)	-GO has high mobility under saturated and unsaturated porous media under low IS. -Under same IS condition, recovery rate of GO under unsaturated sand column were lower compared to saturated media.	(110)
GO (N.A.)	Quartz Sand (0.21–0.30 mm)	Effects of environmental factors on the aggregation and transport of GO.	Saturated borosilicate glass columns (10 cm dia,0.66 cm length) IS: 10, 25, 35, 50 mM (NaCl) pH: 5.1; 7; 9 SRHA: 10 mg/L	 -At high IS, GO displayed high immobilization Insignificant effect of pH in GO transport. -SRHA inhibited aggregation of GO and provided enhanced dispersion and mobility. -Higher flow velocity resulted higher mobility of GO when IS was high. No impact of flow velocity at low IS. 	(111)
GO (Thickness: 0.8 and 1.2 nm)	Quartz sand (26– 30 mesh)	Effects of biofilm (Gram-positive B. subtilis and Gram- negative P. putida) and EPS (polysaccharide and protein) on GO transport	Saturated glass chromatography columns (2.6-cm dia and 20-cm length). IS: 1,10, 50 mM (NaCl)	 -For biofilm coated sand column: Enhanced GO retention due to surface roughness and physical straining of the biofilm. -For EPS coated sand column: Negligible influence on GO transport. 	(112)

GO (thickness: 0.92 ± 0.13 nm and average square root of the area: 582 ± 111.2 nm)	Quartz sand (fine (0.1-0.2 mm), medium (0.5-0.6 mm), and coarse (0.85-1.0 mm).	Effect of input concentration and grain size on transport, retention, and size perturbation of GO	Saturated acrylic columns (2.5 cm inner diameter, 16.7 cm length)	-Mobility of GO in the sand columns reduced with decreasing grain size. -Input concentration also influenced the retention and transport of GO in the sand columns because of the 'blocking' mechanism that reduces the particle retention rate. -After passing through the column, average GO sizes increased dramatically. In addition, the sizes of GO retained in the sand also increased with travel distance.	(113)
GO (dia 237 to 1113 nm) rGO (dia 237 to 1652 nm)	Quartz sand (0.21–0.30 mm)	Effect of cation (monovalent & divalent), pH, SRHA on GO and sulfide reduced rGO transport	Saturated borosilicate glass columns (10 cm × 0.66 cm) IS: 5 to 35 mM NaCl 0.1 to 0.5 mM CaCl ₂ pH: 5,7,9 SRHA: 5 mg/L	 -When Na+ was the background cation: Increasing pH (which increased the accumulation of large hydrated Na+ ions on grain surface) and the presence of SRHA significantly enhanced the transport of RGO, mainly due to steric hindrance. -When Ca²⁺ was background cation: pH and SRHA had little effect (neither affected cation bridging) 	(114
GO (N.A.)	Quartz sand (0.417 to 0.60 mm)	Effect of gravity on GO transport	Plexiglas columns (dia:2 cm; length: 10 cm)	-Gravity had negligible effect on the transport and retention of carbon-based NPs (e.g., GO).	(115)
GO (N.A.)	Quartz sand (0.36–0.60 mm)	Impact of cation composition in mixed Na–Ca electrolyte systems on the transport of GO	Saturated acrylic column (dia 4 cm; length 20 cm)	-The molar ratio of Ca ²⁺ /Na ⁺ in solution was important for altered particle retention behavior at the higher IS of 10mM, compared with little influence at 1mM.	(116)

GO: 1−5 µm, and thickness 0.8−1.2 nm.	Quartz Sand: 110 to 850 µm	To assess fate of GO in saturated and unsaturated structured heterogeneous sand columns	Vertical acrylic columns: Saturated: 20 cm long and 2.5 cm dia; Unsatuarted:16.7 cm long and 2.6 cm dia	-GO retention and transport in all the heterogeneous columns were dominated by the preferential flow phenomena.	(117)
GO (?)	Quartz sand (0.60 to 0.71 mm)	Impact of (Gram- positive B. subtilis and Gram-negative P. putida) biofilms on the transport of GONPs	Saturated Glass column (dia 2.6-cm and length 20-cm) IS: (0.1, 0.5, and 1.0 mM CaCl2) pH: 7.2	-Biofilms reduced the porosity and narrowed the pore sizes of sand columns. -The presence of biofilms provides favorable sites for GONPs retention/ attachment.	(118)
GO (N.A.)	Quartz sand (0.18–0.25 mm)	Effect of clay minerals (kaolinite, montmorillonite, and illite) on GO transport	Saturated glass columns (dia: 0.66 cm and length: 10 cm)	 -Presence of clay minerals (kaolinite, montmorillonite, and illite) inhibited the transport of GO. -Transport inhibition was exerted mainly by the presence of positively charged sites on clay edges (which served as favorable deposition sites), whereas the effects on the overall particle–collector interaction energy and flow path were small. 	(119)
FLG (N.A.)	Quartz sand (0.25–0.30 mm)	Effect of IS on deposition, mobilization, and transport of 14C- labeled few-layer graphene (FLG)	Saturated acrylic columns (5.2 x 1.5 cm) IS: 1-100 mM NaCl	 -FLG is relatively mobile at low IS (e.g., <10 mmol/L); however, increasing in IS will greatly enhance its retention due to concurrent agglomeration and straining. -Electrostatic and steric repulsion from the adsorbed organic macromolecules on FLG effectively reduced agglomeration and thus enhanced transport and release of FLG. 	(120)

GO (dia 1–5 um and thickness 0.8–1.2 nm)	Quartz sand (Fine: 0.3–0.4 mm and coarse: 0.9–1.0 mm)	Effect of T (6 and 24 degree C) on GO transport	Saturated acrylic column (2.5 cm inner diameter and 12.5 cm length)	-At low IS: Temperature had little effect on GO retention and transport in porous media -At high IS: Temperature showed notable effects on GO retention and transport	(121
GO (diameter of 1-5 μm and thickness of 0.8-1.2 nm)	Limestone media (0.70 to 0.90 mm)	To assess transport of GO in limestone media under various electrolytes, solution, pH, and humic acid (HA) concentration	Polytetrafluoroethyl ene columns (2.5 cm dia and 12.0 cm height)	 -GO mobility in limestone media increased with the increasing solution pH and HA concentrations, but the decreasing ionic strength. -In comparison to CI-,S2- in the electrolyte solution enhanced GO mobility in lime- stone media. 	(122)
GO (dia 0.8-3 mm, thickness 0.8-1.2 nm)	Glass beads (Fine: 53- 70 µm; coarse: 0.60-0.85 mm)	Effect of IS on GO transport in packed columns (both homogeneous & heterogeneous)	Saturated acrylic columns (12.4 cm long and 2.2 cm dia) IS: 1, 20, 50 mM (NaCl)	 -In homogeneous media: GO particles exhibited <i>high mobility</i> in both fine and coarse beads at low IS (1 mM), but <i>higher mobility</i> was observed in course media than that in fine media at high IS (20 and 50 mM) conditions. -In heterogeneous media: For uniform coarse-fine grain mixture, the transport and retention behavior of GO particles was also similar to that in the fine media. Heterogenous media with layered structure or large pore channel could produce a preferential flow, which ultimately accelerated the GO transport in the media 	(123)

GO (thickness 0.8 to 1.2 nm)	Quartz sand (0.21–0.43 mm)	Effect of flow velocity on transport of GO	Saturated acrylic columns (dia 2 cm and length 9 cm) IS: 1, 10, 50 mM KCL or 0.1, 0.5, or 1 mM CaCl2; Flow velocities (9.45 x 10-5, 1.89 x 10-4, and 3.78 x 10-4 m s-1)	-Attachment efficiency increased with increasing flow velocity (IFV) for the sheet- shaped GO. This increased attachment efficiency with IFV was attributed to the enhanced approaching and subsequent deposition of the GO at concave surfaces.	(124)
GO (N.A.)	Quartz sand (0. 25–40 mm)	Effects of Mf- SRNOMs on the aggregation and transport of GO in aqueous media and saturated porous media were investigated.	Saturated glass column (dia 1.8 cm; length 10 cm) Concentrations of GO and pristine- /Mf-SRNOMs were 25 mg/L and 5 mg C/L.	-Stronger sorption of high MWNOMs on GO enhanced their steric hindrance effect.	(125
Nitrogen doped graphene (NG (2–10 µm; thickness1–3 nm)	Quartz sand (0.3–0.4mm and 0.5– 0.6 mm)	To assess transport and retention of NG and GO and to investigate the effects of on the transport and retention of NG in saturated porous media	Saturated sand column [sand grain size (0.3–0.4 and 0.5–0.6 mm)]; Temperature (4 and 25 °C), solution ionic strength (1 and 5 mM)	 The retention of NG was larger than GO. The transport of NG was sensitive to solution ionic strength (higher mobility under lower IS). The transport of NG increased with the increasing of sand grain size. The transport of NG was larger at the lower temperature (at high T, the repulsively electrostatic forces between sand and NG decreases) 	(126)
GO (N.A.)	Quartz sand (0.21–0.30 mm)	To assess transport of GO in saturates quartz sand in presence of iron oxides, (goethite,	Saturated boro- silicate glass columns (10 cm length and 0.66 cm dia)	 The presence of iron oxide coatings can magnify the effects of cations on GO transport via two main mechanisms: First, coating with iron oxides can increase surface area, introduce small pores, and 	(127)

GO Quartz Effect of low Glass column (dia -Organic acids significantly enhanced the	(128	
(N.A.) (0.21–0.30 mm) (tartaric acid, glycolic acid, acetic acid) on GO transport (tartaric acid, glycolic acid, acetic acids are stemmed from the <i>steric</i> hindrance between the GO and quartz sand and the competition of organic acids with G for binding sites on grain surfaces. -At pH 7: Differences in the breakthrough among these four LMWOAs are relatively small because the adsorbed LMWOAs can modify surface properties of GO and inhibit the deposition of nanoparticles by a combination of electrostatic and steric repulsion.) f)	8
GO: (Thickness 0.92 ± 0.13 m)Sand (700-850 μm or 350- 450 μm)To assess transport of GO in a 2D porous mediaTransport in a 2D sand tank (30 cm length, 20 cm height and 1.4 cm width)-GO mobility decreased with the increasing solution ionic strength (IS) and decreasing media grain size.GO: (Thickness 0.92 ± 0.13 nm)To assess transport of GO in a 2D porous mediaTransport in a 2D sand tank (30 cm length, 20 cm height and 1.4 cm width)-GO mobility decreased with the increasing solution ionic strength (IS) and decreasing media grain size.	(129	<u>'</u> 9

				media. Even without vertical flow in the sand tanks, GO still spread vertically through dispersion.	
GO (N.A.)	Quartz sand (median grain sizes of 1090, 519, or 330 µm)	To assess aggregation, retention, and release behaviors of GO were investigated under different physicochemical conditions (IS, cation type, Co, and d50).	Transport in stainless-steel column (dia 3 cm; length 12 cm)	-Greater GO transport occurred at a lower IS, monovalent in comparison to divalent cations, lower Co, and in the coarser textured sand.	(130)
GO (dia 1-5 µm, thickness 0.8-1.2 nm)	Quartz sand (Size range of 0.425–0.5 mm and average diameter of 0.45 mm)	To assess the stability of GO under different temperature, cationic surfactant (CTAB) concentration, cation valence, and electrolyte concentration conditions.	Transport in acrylic column of 2.5 cm in diameter and 12.5 cm in height	 -Decrease of the temperature under all the CTAB concentration and NaCl concentration conditions greatly enhanced the transport of GO. -Increase in surfactant concentration effectively promoted the transport of GO in saturated porous media in both monovalent and multivalent electrolyte concentrations 	(131)
GO (Thickness 0.7 to 2 nm; 300 to 1600 nm)	Silica sand of 3 size ranges: coarse S1 (d50 = 0.75 mm), medium S2	To assess particle size (300–1200 nm), concentration (10–50 mg/L), and sand size (coarse to fine) in GO transport.	Saturated plexiglass cylinder (length 15.2 cm, inner diameter 1.6 cm)	-GO mobility in porous media strongly depends on its lateral size. -GO transport is controlled by blocking and straining phenomena.	(132)

	(d50 = 0.4 mm), and fine S3 (d50 = 0.28 mm).				
GO (thickness 0.8–1.2 nm)	Quartz and limestone sediments (0.25 to 0.50 mm)	To assess transport, retention and attachment behavior of GONPs with the surfaces of native aquifer by batch and column experiment	Saturated Plexiglass columns (dia 2.5 cm; length: 9 cm)	 -Retention rate of GO at 22 ∘C was higher than at 4 ∘C. -Higher GO retention onto the surfaces of collectors at higher ionic strengths and cation valence. The size- distribution analysis of retained GO showed decreasing particle diameter with increasing distance from the column inlet at high ionic strength and equal diameter at low ionic strengths. -GO retention rate was higher for natural porous media (compared to sand) due to the presence of metal oxides heterogeneities. -Biofilm acts as a biofilter and thus retains GONPs 	(133)
rGO-Pd nanosheets	Pastoral soil & fine sand (<1	To assess the migration characteristics of	Glass syringe	-Leaching and migration of nanosheets (rGO) in soil is affected by soil porosity and adsorption processes.	(134)
(N.A.)	mm) `	GO and its interaction with soil under leaching condition		-Physicochemical properties (morphology, thickness and oxygen functional groups) of rGO-Pd nanosheets changed by leaching processes.	

GO (1–5 µm lateral diameter and 0.8–1.2 nm layer thickness)	Quartz sand (0.80 to 0.90 mm)	To assess the effect of low molecular weight root exudates (CA, OA), on the stability and transport of GO	Acrylic columns (16.7 cm length, 2.5 cm dia) pH (4.5, 7.0), ionic strength (IS: 10, 50 mM), and organic acid concentrations (10, 25 mM).	-OA and CA at high concentration accelerated the aggregation of GO and reduced the transport of GO in saturated sand media. -The effect of organic acids on GO stability and transport was stronger at lower pH, higher IS, and higher organic acid concentrations. -CA/OA enhanced GO mobility at relative low concentration, indicating the important role of organic acid are concentration dependent.	(135)
--	--	--	---	--	-------

References:

- 1. Zhou N, Zhao Z, Wang H, Chen X, Wang M, He S, et al. The effects of graphene oxide on nitrification and N2O emission: Dose and exposure time dependent. Environ Pollut. 2019;252:960–6.
- 2. Li Y, Lu Y, Zhang W, Wu H, Zhang C, Wang L, et al. Enhanced biological nitrogen removal from sediment by graphene derivative-mediated community assembly. Bioresour Technol. 2020;306(March).
- 3. Li J, Peng Z, Hu R, Gao K, Shen C, Liu S, et al. Micro-graphite particles accelerate denitrification in biological treatment systems. Bioresour Technol. 2020;308(December 2019):122935.
- 4. Ouyang P, Liang C, Liu F, Chen Q, Yan Z, Ran J, et al. Stimulating effects of reduced graphene oxide on the growth and nitrogen fixation activity of nitrogen-fixing bacterium Azotobacter chroococcum. Chemosphere. 2022;294(January).
- 5. Yin X, Qiao S, Yu C, Tian T, Zhou J. Effects of reduced graphene oxide on the activities of anammox biomass and key enzymes. Chem Eng J. 2015;276:106–12.
- 6. Ruiz ON, Fernando KAS, Wang B, Brown NA, Luo PG, McNamara ND, et al. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011;5(10):8100–7.
- 7. Luo Y, Yang X, Tan X, Xu L, Liu Z, Xiao J, et al. Functionalized graphene oxide in microbial engineering: An effective stimulator for bacterial growth. Carbon N Y. 2016;103:172–80.

- 8. Salas EC, Sun Z, Lüttge A, Tour JM. Reduction of Graphene Oxide via Bacterial Respiration. ACS Nano. 2010 Aug 24;4(8):4852–6.
- 9. Wang G, Qian F, Saltikov CW, Jiao Y, Li Y. Microbial reduction of graphene oxide by Shewanella. Nano Res. 2011 Jun 23;4(6):563–70.
- 10. Jiao Y, Qian F, Li Y, Wang G, Saltikov CW, Gralnick JA. Deciphering the Electron Transport Pathway for Graphene Oxide Reduction by Shewanella oneidensis MR-1. J Bacteriol. 2011 Jul 15;193(14):3662–5.
- 11. Guo Z, Xie C, Zhang P, Zhang J, Wang G, He X, et al. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm. Sci Total Environ. 2017;580:1300–8.
- 12. Wang D, Wang G, Zhang G, Xu X, Yang F. Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresour Technol. 2013;131:527–30.
- 13. Akhavan O, Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon N Y. 2012;50(5):1853–60.
- Banach-Wiśniewska A, Tomaszewski M, Hellal MS, Ziembińska-Buczyńska A. Effect of biomass immobilization and reduced graphene oxide on the microbial community changes and nitrogen removal at low temperatures. Sci Rep. 2021;11(1):1–12.
- 15. Liu L, Zhu C, Fan M, Chen C, Huang Y, Hao Q, et al. Oxidation and degradation of graphitic materials by naphthalene-degrading bacteria. Nanoscale. 2015;7(32):13619–28.
- Yilihamu A, Ouyang B, Ouyang P, Bai Y, Zhang Q, Shi M, et al. Interaction between graphene oxide and nitrogenfixing bacterium Azotobacter chroococcum: Transformation, toxicity and nitrogen fixation. Carbon N Y. 2020;160:5– 13.
- 17. Dong Q, Liu Y, Shi H, Huang X. Effects of graphite nanoparticles on nitrification in an activated sludge system. Chemosphere. 2017;182:231–7.
- 18. Barrios AC, Wang Y, Gilbertson LM, Perreault F. Structure-Property-Toxicity Relationships of Graphene Oxide: Role of Surface Chemistry on the Mechanisms of Interaction with Bacteria. Environ Sci Technol. 2019;53(24):14679–87.
- Barrios AC, Cahue YP, Wang Y, Geiger J, Puerari RC, Matias WG, et al. Emerging investigator series: a multispecies analysis of the relationship between oxygen content and toxicity in graphene oxide. Environ Sci Nano. 2021;8(6):1543–59.
- 20. Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4(10):5731–6.

- 21. Mejías Carpio IE, Santos CM, Wei X, Rodrigues DF. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale. 2012;4(15):4746–56.
- 22. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano. 2011;5(9):6971–80.
- 23. Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 2014;6(3):1879–89.
- 24. Zhang X, Cao H, Wang J, Li F, Zhao J. Graphene Oxide Exhibits Antifungal Activity against Bipolaris sorokiniana In Vitro and In Vivo. Microorganisms. 2022 Oct 9;10(10):1994.
- 25. Wang X, Peng F, Cheng C, Chen L, Shi X, Gao X, et al. Synergistic Antifungal Activity of Graphene Oxide and Fungicides against Fusarium Head Blight In Vitro and In Vivo. Nanomaterials. 2021 Sep 14;11(9):2393.
- 26. Suarez-Diez M, Porras S, Laguna-Teno F, Schaap PJ, Tamayo-Ramos JA. Toxicological response of the model fungus Saccharomyces cerevisiae to different concentrations of commercial graphene nanoplatelets. Sci Rep. 2020 Dec 24;10(1):3232.
- 27. Nguyen HN, Chaves-Lopez C, Oliveira RC, Paparella A, Rodrigues DF. Cellular and metabolic approaches to investigate the effects of graphene and graphene oxide in the fungi Aspergillus flavus and Aspergillus niger. Carbon N Y. 2019;143:419–29.
- 28. Liu Y, Ma H, Huang J, Li Z, Pan Y, Du Y. Carbonaceous nanomaterials stimulate extracellular enzyme release by the fungus Cladosporium sp. and enhance extracellular electron transfer to facilitate lignin biodegradation. Sci Total Environ. 2019 Dec;696(174):134072.
- 29. Yang H, Feng S, Ma Q, Ming Z, Bai Y, Chen L, et al. Influence of reduced graphene oxide on the growth, structure and decomposition activity of white-rot fungus Phanerochaete chrysosporium. RSC Adv. 2018;8(9):5026–33.
- 30. Zhu S, Luo F, Zhu B, Wang G-X. Toxicological effects of graphene oxide on Saccharomyces cerevisiae. Toxicol Res (Camb). 2017;6(4):535–43.
- 31. Wang X, Cai A, Wen X, Jing D, Qi H, Yuan H. Graphene oxide-Fe3O4 nanocomposites as high-performance antifungal agents against Plasmopara viticola. Sci China Mater. 2017 Mar 20;60(3):258–68.
- 32. Xie J, Ming Z, Li H, Yang H, Yu B, Wu R, et al. Toxicity of graphene oxide to white rot fungus Phanerochaete chrysosporium. Chemosphere. 2016;151:324–31.
- 33. Wang X, Liu X, Chen J, Han H, Yuan Z. Evaluation and mechanism of antifungal effects of carbon nanomaterials in

controlling plant fungal pathogen. Carbon N Y. 2014;68:798-806.

- 34. Sawangphruk M, Srimuk P, Chiochan P, Sangsri T, Siwayaprahm P. Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon N Y. 2012;50(14):5156–61.
- 35. Wang X, Liu C, Li H, Zhang H, Ma R, Zhang Q, et al. Metabonomics-assisted label-free quantitative proteomic and transcriptomic analysis reveals novel insights into the antifungal effect of graphene oxide for controlling: Fusarium graminearum. Environ Sci Nano. 2019;6(11):3401–21.
- Cruces E, Barrios AC, Cahue YP, Januszewski B, Gilbertson LM, Perreault F. Similar toxicity mechanisms between graphene oxide and oxidized multi-walled carbon nanotubes in Microcystis aeruginosa. Chemosphere. 2021;265:129137.
- Malina T, Maršálková E, Holá K, Tuček J, Scheibe M, Zbořil R, et al. Toxicity of graphene oxide against algae and cyanobacteria: Nanoblade-morphology-induced mechanical injury and self-protection mechanism. Carbon N Y. 2019 Dec;155:386–96.
- 38. Zhao J, Cao X, Wang Z, Dai Y, Xing B. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res. 2017 Mar;111:18–27.
- 39. Du S, Zhang P, Zhang R, Lu Q, Liu L, Bao X, et al. Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus. Chemosphere. 2016;164:499–507.
- 40. Hu X, Ouyang S, Mu L, An J, Zhou Q. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles. Environ Sci Technol. 2015;49(18):10825–33.
- 41. Ouyang S, Hu X, Zhou Q. Envelopment-Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size. ACS Appl Mater Interfaces. 2015;7(32):18104–12.
- 42. Zhang Y, Qin L, Sun J, Chen L, Jia L, Zhao J, et al. Metabolite changes associated with earthworms (Eisenia fetida) graphene exposure revealed by matrix-assisted laser desorption/ionization mass spectrometry imaging. Ecotoxicol Environ Saf. 2020 Dec;205(July):111102.
- 43. Zhang H, Vidonish J, Lv W, Wang X, Alvarez P. Differential histological, cellular and organism-wide response of earthworms exposed to multi-layer graphenes with different morphologies and hydrophobicity. Environ Pollut. 2020;263:114468.
- 44. Zhao S, Wang Y, Duo L. Biochemical toxicity, lysosomal membrane stability and DNA damage induced by

graphene oxide in earthworms. Environ Pollut. 2021 Jan;269:116225.

- 45. Duo L, Wang Y, Zhao S. Individual and histopathological responses of the earthworm (Eisenia fetida) to graphene oxide exposure. Ecotoxicol Environ Saf. 2022 Jan;229:113076.
- 46. Mao L, Liu C, Lu K, Su Y, Gu C, Huang Q, et al. Exposure of few layer graphene to Limnodrilus hoffmeisteri modifies the graphene and changes its bioaccumulation by other organisms. Carbon N Y. 2016 Nov;109:566–74.
- 47. Xu K, Wang X, Lu C, Liu Y, Zhang D, Cheng J. Toxicity of three carbon-based nanomaterials to earthworms: Effect of morphology on biomarkers, cytotoxicity, and metabolomics. Sci Total Environ. 2021 Jul;777:146224.
- 48. ZHAO S, BAI X, MOU M, DUO L. Carbon nanomaterial addition changes soil nematode community in a tall fescue mesocosm. Pedosphere. 2022;32(5):777–84.
- 49. Bai X, Zhao S, Duo L. Impacts of carbon nanomaterials on the diversity of microarthropods in turfgrass soil. Sci Rep. 2017;7(1):1–6.
- 50. Wang X, Xie H, Wang Z, He K. Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids Surfaces B Biointerfaces. 2019;173(October 2018):632–8.
- 51. Chen Z, Niu J, Guo Z, Sui X, Xu N, Kareem HA, et al. Graphene enhances photosynthesis and the antioxidative defense system and alleviates salinity and alkalinity stresses in alfalfa (Medicago sativaL.) by regulating gene expression. Environ Sci Nano. 2021;8(9):2731–48.
- 52. Zhao D, Fang Z, Tang Y, Tao J. Graphene Oxide as an E ff ective Soil Water Retention Agent Can Confer Drought Stress Tolerance to Paeonia ostii without Toxicity. 2020;
- 53. Pandey K, Anas M, Hicks VK, Green MJ, Khodakovskaya M V. Improvement of Commercially Valuable Traits of Industrial Crops by Application of Carbon-based Nanomaterials. Sci Rep. 2019;9(1):1–14.
- 54. Mahmoud NE, Abdelhameed RM. Plant Stress Superiority of modified graphene oxide for enhancing the growth, yield, and antioxidant potential of pearl millet (Pennisetum glaucum L.) under salt stress ☆. Plant Stress. 2021;2:100025.
- 55. Pandey K, Lahiani MH, Hicks VK, Keith Hudson M, Green MJ, Khodakovskaya M. Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS One. 2018;13(8):1–17.
- 56. Wang S, Liu Y, Wang X, Xiang H, Kong D, Wei N, et al. Effects of concentration-dependent graphene on maize seedling development and soil nutrients. Sci Rep. 2023 Feb 14;13(1):2650.
- 57. Aazami MA, Mehrabani LV, Hashemi T, Hassanpouraghdam MB, Rasouli F. Soil-based nano-graphene oxide and

foliar selenium and nano-Fe influence physiological responses of "Sultana" grape under salinity. Sci Rep. 2022 Dec 10;12(1):4234.

- 58. Golkar P, Abdollahi Bakhtiari M, Bazarganipour M. The effects of nanographene oxide on the morpho-biochemical traits and antioxidant activity of Lepidium sativum L. under in vitro salinity stress. Sci Hortic (Amsterdam). 2021 Oct;288(November 2020):110301.
- 59. Zhang X, Cao H, Wang H, Zhang R, Jia H, Huang J, et al. Effects of graphene on morphology, microstructure and transcriptomic profiling of Pinus tabuliformis Carr. roots. Aceto S, editor. PLoS One. 2021 Jul 8;16(7):e0253812.
- 60. Ghorbanpour M, Khaltabadi Farahani AH, Hadian J. Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration. Ecotoxicol Environ Saf. 2018 Feb;148(August 2017):910–22.
- 61. Park S, Choi KS, Kim S, Gwon Y, Kim J. Graphene Oxide-Assisted Promotion of Plant Growth and Stability. Nanomaterials. 2020 Apr 15;10(4):758.
- 62. Zhang M, Gao B, Chen J, Li Y. Effects of graphene on seed germination and seedling growth. J Nanoparticle Res. 2015 Feb 6;17(2):78.
- 63. He Y, Hu R, Zhong Y, Zhao X, Chen Q, Zhu H. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res. 2018;11(4):1928–37.
- 64. Lahiani MH, Dervishi E, Ivanov I, Chen J, Khodakovskaya M. Comparative study of plant responses to carbonbased nanomaterials with different morphologies. Nanotechnology. 2016;27(26).
- 65. Hu X, Zhou Q. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep. 2014;4:1–9.
- 66. Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, et al. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ. 2014 Feb;472:834–41.
- 67. Anjum NA, Singh N, Singh MK. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L .). 2013;
- 68. Li F, Sun C, Li X, Yu X, Luo C, Shen Y, et al. The effect of graphene oxide on adventitious root formation and growth in apple. Plant Physiol Biochem. 2018 Aug;129(March):122–9.
- 69. Zhang X, Cao H, Zhao J, Wang H, Xing B, Chen Z, et al. Graphene oxide exhibited positive effects on the growth of Aloe vera L. Physiol Mol Biol Plants. 2021;27(4):815–24.

- 70. Chen Z, Zhao J, Song J, Han S, Du Y, Qiao Y, et al. Influence of graphene on the multiple metabolic pathways of Zea mays roots based on transcriptome analysis. Wang W, editor. PLoS One. 2021 Jan 4;16(1):e0244856.
- 71. Chen J, Yang L, Li S, Ding W. Various Physiological Response to Graphene Oxide and Amine-Functionalized Graphene Oxide in Wheat (Triticum aestivum). Molecules. 2018 May 7;23(5):1104.
- 72. Chakravarty D, Erande MB, Late DJ. Graphene quantum dots as enhanced plant growth regulators: Effects on coriander and garlic plants. J Sci Food Agric. 2015;95(13):2772–8.
- 73. Bhattacharya N, Kochar M, Bohidar HB, Yang W, Cahill DM. Biologically Synthesized and Indole Acetic Acid-Loaded Graphene as Biostimulants for Maize Growth Enhancement. ACS Agric Sci Technol. 2023 May 15;3(5):432–44.
- 74. Ren W, Chang H, Li L, Teng Y. Effect of Graphene Oxide on Growth of Wheat Seedlings: Insights from Oxidative Stress and Physiological Flux. Bull Environ Contam Toxicol. 2020 Jul 26;105(1):139–45.
- 75. Zanelli D, Candotto Carniel F, Fortuna L, Pavoni E, Jehová González V, Vázquez E, et al. Interactions of airborne graphene oxides with the sexual reproduction of a model plant: When production impurities matter. Chemosphere. 2023 Jan;312(November 2022):137138.
- 76. Guo X, Zhao J, Wang R, Zhang H, Xing B, Naeem M, et al. Plant Physiology and Biochemistry Effects of graphene oxide on tomato growth in different stages. Plant Physiol Biochem. 2021;162(March):447–55.
- González-García Y, López-Vargas ER, Cadenas-Pliego G, Benavides-Mendoza A, González-Morales S, Robledo-Olivo A, et al. Impact of carbon nanomaterials on the antioxidant system of Tomato seedlings. Int J Mol Sci. 2019;20(23).
- 78. Guroo JA, Khan M, Ahmad A, Azam A, Siddiqui ZA. Management of Meloidogyne incognita and Macrophomina phaseolina by Graphene Oxide on Lens culinaris. Acta Phytopathol Entomol Hungarica. 2016 Jun;51(1):43–56.
- 79. Wang Y, Welch ZS, Ramirez AR, Bouchard DC, Schimel JP, Gardea-Torresdey JL, et al. Effects of carbonaceous nanomaterials on soil-grown soybeans under combined heat and insect stresses. Environ Chem. 2019;16(6):482.
- Chen J, Sun L, Cheng Y, Lu Z, Shao K, Li T, et al. Graphene Oxide-Silver Nanocomposite: Novel Agricultural Antifungal Agent against Fusarium graminearum for Crop Disease Prevention. ACS Appl Mater Interfaces. 2016;8(36):24057–70.
- 81. Gao M, Chang X, Yang Y, Song Z. Foliar graphene oxide treatment increases photosynthetic capacity and reduces oxidative stress in cadmium-stressed lettuce. Plant Physiol Biochem. 2020;154(February):287–94.
- 82. Gao M, Xu Y, Chang X, Dong Y, Song Z. Effects of foliar application of graphene oxide on cadmium uptake by

lettuce. J Hazard Mater. 2020;398(May):122859.

- 83. Kazlauskas M, Jurgelėnė Ž, Šemčuk S, Jokšas K, Kazlauskienė N, Montvydienė D. Effect of graphene oxide on the uptake, translocation and toxicity of metal mixture to Lepidium sativum L. plants: Mitigation of metal phytotoxicity due to nanosorption. Chemosphere. 2023 Jan;312(November 2022):137221.
- 84. Ozfidan-Konakci C, Yildiztugay E, Cavusoglu H, Arikan B, Elbasan F, Kucukoduk M, et al. Influences of sulfonated graphene oxide on gas exchange performance, antioxidant systems and redox states of ascorbate and glutathione in nitrate and/or ammonium stressed-wheat (Triticum aestivum L.). Environ Sci Nano. 2021;8(11):3343–64.
- 85. Yildiztugay E, Ozfidan-Konakci C, Cavusoglu H, Arikan B, Alp FN, Elbasan F, et al. Nanomaterial sulfonated graphene oxide advances the tolerance against nitrate and ammonium toxicity by regulating chloroplastic redox balance, photochemistry of photosystems and antioxidant capacity in Triticum aestivum. J Hazard Mater. 2022 Feb;424(PA):127310.
- 86. El-Abeid SE, Ahmed Y, Daròs JA, Mohamed MA. Reduced graphene oxide nanosheet-decorated copper oxide nanoparticles: A potent antifungal nanocomposite against fusarium root rot and wilt diseases of tomato and pepper plants. Nanomaterials. 2020;10(5).
- 87. Pandorf M, Pourzahedi L, Gilbertson L, Lowry G V., Herckes P, Westerhoff P. Graphite nanoparticle addition to fertilizers reduces nitrate leaching in growth of lettuce (: Lactuca sativa). Environ Sci Nano. 2020;7(1):127–38.
- 88. Song J, Cao K, Duan C, Luo N, Cui X. Effects of graphene on larix olgensis seedlings and soil properties of haplic cambisols in Northeast China. Forests. 2020;11(3):1–16.
- 89. Zhang P, Guo Z, Luo W, Monikh FA, Xie C, Valsami-Jones E, et al. Graphene Oxide-Induced pH Alteration, Iron Overload, and Subsequent Oxidative Damage in Rice (Oryza sativa L.): A New Mechanism of Nanomaterial Phytotoxicity. Environ Sci Technol. 2020;54(6):3181–90.
- 90. Chen L, Wang C, Li H, Qu X, Yang S-T, Chang X-L. Bioaccumulation and Toxicity of 13 C-Skeleton Labeled Graphene Oxide in Wheat. Environ Sci Technol. 2017 Sep 5;51(17):10146–53.
- 91. Chen L, Yang S, Liu Y, Mo M, Guan X, Huang L, et al. Toxicity of graphene oxide to naked oats (Avena sativa L.) in hydroponic and soil cultures. RSC Adv. 2018;8(28):15336–43.
- 92. Xie L, Chen F, Du H, Zhang X, Wang X, Yao G, et al. Graphene oxide and indole-3-acetic acid cotreatment regulates the root growth of Brassica napus L. via multiple phytohormone pathways. BMC Plant Biol. 2020;20(1):1–12.
- 93. Xie L-L, Chen F, Zou X-L, Shen S-S, Wang X-G, Yao G-X, et al. Graphene oxide and ABA cotreatment regulates

root growth of Brassica napus L. by regulating IAA/ABA. J Plant Physiol. 2019 Sep;240(July):153007.

- 94. Cheng F, Liu YF, Lu GY, Zhang XK, Xie LL, Yuan CF, et al. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. J Plant Physiol. 2016;193:57–63.
- 95. Lin X, Chen L, Hu X, Feng S, Huang L, Quan G, et al. Toxicity of graphene oxide to white moss Leucobryum glaucum. RSC Adv. 2017;7(79):50287–93.
- 96. Zhao S, Zhu X, Mou M, Wang Z, Duo L. Assessment of graphene oxide toxicity on the growth and nutrient levels of white clover (Trifolium repens L.). Ecotoxicol Environ Saf. 2022 Apr;234(November 2021):113399.
- 97. Zhao S, Wang W, Chen X, Gao Y, Wu X, Ding M, et al. Graphene oxide affected root growth, anatomy, and nutrient uptake in alfalfa. Ecotoxicol Environ Saf. 2023;250(July 2022):114483.
- 98. Du J, Wang T, Zhou Q, Hu X, Wu J, Li G, et al. Graphene oxide enters the rice roots and disturbs the endophytic bacterial communities. Ecotoxicol Environ Saf. 2020;192(June 2019):110304.
- 99. Vochita G, Oprica L, Gherghel D, Mihai CT, Boukherroub R, Lobiuc A. Graphene oxide effects in early ontogenetic stages of Triticum aestivum L. seedlings. Ecotoxicol Environ Saf. 2019;181(June):345–52.
- 100. Hao Y, Ma C, Zhang Z, Song Y, Cao W, Guo J, et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut. 2018;232:123–36.
- 101. Li X, Mu L, Li D, Ouyang S, He C, Hu X. Effects of the size and oxidation of graphene oxide on crop quality and specific molecular pathways. Carbon N Y. 2018;140:352–61.
- 102. Li X, Sun S, Guo S, Hu X. Identifying the Phytotoxicity and Defense Mechanisms Associated with Graphene-Based Nanomaterials by Integrating Multiomics and Regular Analysis. Environ Sci Technol. 2021 Jul 20;55(14):9938–48.
- 103. Chen L, Wang C, Yang S, Guan X, Zhang Q, Shi M, et al. Chemical reduction of graphene enhances: In vivo translocation and photosynthetic inhibition in pea plants. Environ Sci Nano. 2019;6(4):1077–88.
- 104. Weng Y, You Y, Lu Q, Zhong A, Liu S, Liu H, et al. Graphene oxide exposure suppresses nitrate uptake by roots of wheat seedlings. Environ Pollut. 2020;262:1–11.
- 105. Candotto Carniel F, Fortuna L, Nepi M, Cai G, Del Casino C, Adami G, et al. Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. J Hazard Mater. 2020;393:122380.
- 106. Begum P, Fugetsu B. Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions. J Hazard Mater. 2013;260:1032–41.
- 107. Begum P, Ikhtiari R, Fugetsu B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and

lettuce. Carbon N Y. 2011 Oct;49(12):3907–19.

- 108. Feriancikova L, Xu S. Deposition and remobilization of graphene oxide within saturated sand packs. J Hazard Mater. 2012 Oct;235–236:194–200.
- 109. Lanphere JD, Luth CJ, Walker SL. Effects of Solution Chemistry on the Transport of Graphene Oxide in Saturated Porous Media. Environ Sci Technol. 2013 May 7;47(9):4255–61.
- 110. Liu L, Gao B, Wu L, Morales VL, Yang L, Zhou Z, et al. Deposition and transport of graphene oxide in saturated and unsaturated porous media. Chem Eng J. 2013;229:444–9.
- 111. Qi Z, Zhang L, Wang F, Hou L, Chen W. Factors controlling transport of graphene oxide nanoparticles in saturated sand columns. Environ Toxicol Chem. 2014;33(5):998–1004.
- 112. Jian-Zhou H, Cheng-Cheng L, Deng-Jun W, Zhou D-M. Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media. J Hazard Mater. 2015 Dec;300:467–74.
- 113. Sun Y, Gao B, Bradford SA, Wu L, Chen H, Shi X, et al. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size. Water Res. 2015 Jan;68:24–33.
- 114. Xia T, Fortner JD, Zhu D, Qi Z, Chen W. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms. Environ Sci Technol. 2015;49(19):11468–75.
- 115. Cai L, Zhu J, Hou Y, Tong M, Kim H. Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand. J Contam Hydrol. 2015 Oct;181:153–60.
- 116. Fan W, Jiang XH, Yang W, Geng Z, Huo MX, Liu ZM, et al. Transport of graphene oxide in saturated porous media: Effect of cation composition in mixed Na-Ca electrolyte systems. Sci Total Environ. 2015;511:509–15.
- 117. Dong S, Shi X, Gao B, Wu J, Sun Y, Guo H, et al. Retention and Release of Graphene Oxide in Structured Heterogeneous Porous Media under Saturated and Unsaturated Conditions. Environ Sci Technol. 2016;50(19):10397–405.
- 118. He J-Z, Wang D-J, Fang H, Fu Q-L, Zhou D-M. Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms. Chemosphere. 2017 Feb;169:1–8.
- 119. Lu T, Xia T, Qi Y, Zhang C, Chen W. Effects of clay minerals on transport of graphene oxide in saturated porous media. Environ Toxicol Chem. 2017 Mar;36(3):655–60.
- 120. Su Y, Gao B, Mao L. Concurrent agglomeration and straining govern the transport of 14C-labeled few-layer graphene in saturated porous media. Water Res. 2017 May;115:84–93.
- 121. Wang M, Gao B, Tang D, Sun H, Yin X, Yu C. Effects of temperature on graphene oxide deposition and transport in

saturated porous media. J Hazard Mater. 2017 Jun;331:28-35.

- 122. Dong S, Sun Y, Gao B, Shi X, Xu H, Wu J, et al. Retention and transport of graphene oxide in water-saturated limestone media. Chemosphere. 2017;180:506–12.
- 123. Chen C, Shang J, Zheng X, Zhao K, Yan C, Sharma P, et al. Effect of physicochemical factors on transport and retention of graphene oxide in saturated media. Environ Pollut. 2018 May;236:168–76.
- 124. Zhang C, Yan A, Wang G, Jin C, Chen Y, Shen C. Impact of Flow Velocity on Transport of Graphene Oxide Nanoparticles in Saturated Porous Media. Vadose Zo J. 2018;17(1):180019.
- 125. Shen M, Hai X, Shang Y, Zheng C, Li P, Li Y, et al. Insights into aggregation and transport of graphene oxide in aqueous and saturated porous media: Complex effects of cations with different molecular weight fractionated natural organic matter. Sci Total Environ. 2019 Mar;656:843–51.
- 126. Li D, Li C, Gao B, Li Y, Sun H, Wang M. Transport of N-doped graphene in saturated porous media. Chem Eng J. 2019;360(October 2018):24–9.
- 127. Qi Z, Du T, Ma P, Liu F, Chen W. Transport of graphene oxide in saturated quartz sand containing iron oxides. Sci Total Environ. 2019;657:1450–9.
- 128. Li J, Chen J, Lu T, Wang Y, Zhang H, Shang Z, et al. Effects of low-molecular weight organic acids on the transport of graphene oxide nanoparticles in saturated sand columns. Sci Total Environ. 2019 May;666:94–102.
- 129. Dong S, Gao B, Sun Y, Guo H, Wu J, Cao S, et al. Visualization of graphene oxide transport in two-dimensional homogeneous and heterogeneous porous media. J Hazard Mater. 2019;369(September 2018):334–41.
- 130. Liang Y, Bradford SA, Šimůnek J, Klumpp E. Mechanisms of graphene oxide aggregation, retention, and release in quartz sand. Sci Total Environ. 2019;656:70–9.
- 131. Wang M, Yu C, Tang D, Chen J, Gao B. Effects of Surfactant and Electrolyte Concentrations, Cation Valence, and Temperature on Graphene Oxide Retention and Transport in Saturated Porous Media. Water Air Soil Pollut. 2019;230(1).
- 132. Beryani A, Alavi Moghaddam MR, Tosco T, Bianco C, Hosseini SM, Kowsari E, et al. Key factors affecting graphene oxide transport in saturated porous media. Sci Total Environ. 2020 Jan;698:134224.
- 133. Ramazanpour Esfahani A, Batelaan O, Hutson JL, Fallowfield HJ. Transport and retention of graphene oxide nanoparticles in sandy and carbonaceous aquifer sediments: Effect of physicochemical factors and natural biofilm. J Environ Manage. 2021 Jan;278(P1):111419.
- 134. Zhou Q, Li D, Wang T, Hu X. Leaching of graphene oxide nanosheets in simulated soil and their influences on

microbial communities. J Hazard Mater. 2021 Feb;404(PA):124046.

135. Li X, Gao B, Xu H, Sun Y, Shi X, Wu J. Effect of root exudates on the stability and transport of graphene oxide in saturated porous media. J Hazard Mater. 2021 Jul;413(November 2020):125362.