Electronic Supplementary Information – Environmental Science: Nano

for "Colloidal stability of hematite nanoparticles in the presence of a common quaternary ammonium compound at environmentally-relevant concentrations" by Deborah M. Aruguete, Andy Zhuang, Cameron Canonaco, Trevor Sheckler, Corryn Schmidt and Rituraj Borgohain^c

I. Mass spectrometry

Plasma gas flow	15 L/min
Auxiliary gas flow	0.9 L / min
Nebulizer gas flow*	0.75 – 1.03 L / min
ICP RF power	1600 W
Mode of operation	He Collision Cell on
He gas flow	4.3 mL/min
Spray chamber temperature	2° C
Sample uptake	0.32 mL/min
Ion optic voltages*	Vary
Integration time	0.1 s
Replicates / sample	3
Nebulizer type	Agilent MicroMist Glass U-series
Spray chamber type	Agilent 7900 UHMI Spray Chamber (Scott-style quartz)
Sample cone	Agilent 7900 Ni Sampler Cone with Cu base
Skimmer cone	Agilent 7900/8900 Ni Skimmer Cone

Table S1.	Operating	conditions for	Agilent 7900	ICP-MS
-----------	-----------	----------------	--------------	--------

*Tuned daily using Agilent Tuning Solution for ICP-MS containing 1 μ g/L each of Li, Y, Ce, Tl and Co in a matrix of 2% HNO₃ (stock solution #5188-6564).

Parameters for this instrument are adjusted to maximize the ⁵⁹Co, ⁸⁹Y and ²⁰⁵Tl signals (in tuning solution standard). Parameters were also adjusted to reduce the formation of doubly-charged species and oxides by minimizing the ratios of ¹⁴⁰Ce⁺⁺/¹⁴⁰Ce (70/140 ratio) and ¹⁵⁶CeO/Ce (≤ 0.03). To reduce the amount of polyatomic species formed, a collision cell was utilized. He flow was tuned to keep ⁴⁰Ar³⁸Ar at a minimum.

All stable isotopes of iron were monitored, namely ⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe and ⁵⁸Fe. The reported measurements were based on ⁵⁷Fe due to polyatomic interferences with N and Cl (both present in the surrounding matrix), along with our monitoring of the discrepancy between the signal with and without the He collision cell. Other than the expected polyatomic species with Ar, O and H, ⁵⁷Fe has mass interferences with polyatomics containing Ca and F. Given that the high purity of our reagents makes Ca and F unlikely contaminants, we believed ⁵⁷Fe was the best choice.

The following table contains the common mass interferences for iron. Those expected to be particularly significant are indicated in red.

Isotope	Natural abundance	Common interferences
⁵⁴ Fe	5.85%	³⁷ Cl ¹⁶ OH, ⁴⁰ Ar ¹⁴ N, ³⁶ Ar ¹⁸ O, ³⁸ Ar ¹⁶ O, ³⁶ Ar ¹⁷ OH, ³⁶ S ¹⁸ O, ³⁵ Cl ¹⁸ O, ³⁷ Cl ¹⁷ O
⁵⁶ Fe	91.8%	⁴⁰ Ar ¹⁶ O, ⁴⁰ Ca ¹⁶ O, ⁴⁰ Ar ¹⁵ NH, ³⁸ Ar ¹⁸ O, ³⁸ Ar ¹⁷ OH, ³⁷ Cl ¹⁸ OH
⁵⁷ Fe	2.12%	⁴⁰ ArOH, ⁴⁰ CaOH, ⁴⁰ Ar ¹⁷ O, ³⁸ Ar ¹⁸ OH, ³⁸ Ar ¹⁹ F
⁵⁸ Fe	0.28%	N/A (Signal too low)

Table S2. Common mass interferences for iron*

*Reference: May, T.W. and Wiedmeyer, R.H. "A Table of Polyatomic Interferences in ICP-MS" *Atomic Spectroscopy* Vol 19(5) 1998 150-155.

II. Semiquantitative analysis of NP content in suspension

Absorption spectroscopy was utilized as an immediate, rapid means to characterize the remaining NP content in suspensions. As optical absorbance of NP suspensions is affected by concentration, particle size/aggregation, and other size-influenced physicochemical parameters, it was only utilized as a semiquantitative measurement. Due to the semiquantitative nature of this data, no detailed statistical analysis was performed.

Figure S1. Box-and-whiskers plot of absorbance values at 500 nm (A_{500}) for aliquots of NP suspensions collected after 22 h of mixing. White boxes are data from NP-only trials, light gray boxes are data from +AWI trials with CTAC, and the dark gray boxes are data from -AWI trials with CTAC. The concentrations of CTAC were 10, 100, and 1000 µg / L. Mean A_{500} values are denoted with the symbol "X". The dots mark outlier measurements, namely data points >1.5 interquartile ranges above the third quartile or below the first quartile.

Treatment	Mean A ₅₀₀	Std dev A ₅₀₀	Median A ₅₀₀	Replicates (n)
Sonicated, pre- mixing*	0.419	0.043	0.429	10
-AWI (NP only)	0.367	0.053	0.387	26
+AWI (NP only)	0.094	0.120	0.083	30
+AWI 10 µg CTAC / L	0.137	0.088	0.139	30
+AWI 100 μg CTAC / L	0.249	0.084	0.255	29
+AWI 1000 μg CTAC / L	0.258	0.082	0.276	27
-AWI 10 μg CTAC / L	0.340	0.037	0.322	9
-AWI 100 µg CTAC / L	0.356	0.036	0.328	9
+AWI 1000 μg CTAC / L	0.362	0.038	0.383	12

Table S3. Absorbance values of NP suspensions at 500 nm.

*After sonication, A_{500} decreased from the original value of 0.5 (prior to sonication).

III. *p*-values resulting from pairwise comparisons (Mann-Whitney)

For all dataset groups, p-values were <0.0005 for Kruskal – Wallis tests. Note that for DLS or zeta potential data, the -AWI 10, -AWI 100, and -AWI 1000 treatments were not included as these treatments' sample sizes were too low.

Pink numbers indicate p < 0.05, but not reaching the Bonferroni-corrected threshold of $p \le 0.001$ (or 0.003 for DLS and zeta potential data).

Yellow-highlighted boxes are for $p \le 0.001$ ($p \le 0.002$ for surface tension data, $p \le 0.003$ for DLS and zeta potential data), indicating that the Bonferroni-corrected significance threshold was met or exceeded.

	Initial	-AWI	+AWI	+AWI	+AWI	+AWI	-AWI	-AWI	-AWI
				10	100	1000	10	100	1000
Initial		0.403	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.553	0.495	0.179
-AWI			< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.249	0.416	0.450
+AWI				0.057	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
+AWI 10					0.004	< 0.0005	< 0.0005	< 0.0005	< 0.0005
+AWI 100						< 0.0005	< 0.0005	< 0.0005	< 0.0005
+AWI 1000							< 0.0005	< 0.0005	< 0.0005
-AWI 10								0.473	0.019
-AWI 100									0.027
-AWI 1000									

Table S4. Mann-Whitney Test *p*-values for [Fe] data

 Table S5. Mann-Whitney Test *p*-values for DLS data (Z-average sizes)

	Initial	-AWI	+AWI	+AWI	+AWI	+AWI
				10	100	1000
Initial		0.023	< 0.0005	< 0.0005	0.075	0.312
-AWI			0.001	0.001	1.000	0.374
+AWI				0.421	< 0.0005	< 0.0005
+AWI 10					< 0.0005	< 0.0005
+AWI 100						0.078
+AWI 1000						

				AWI+	AWI+	
	Initial	AWI - AV	AWI+	10	100	AWI+1000
Initial		0.927	0.210	0.074	0.144	0.023
AWI-			0.121	0.027	0.031	0.006
AWI+				1.000	0.523	0.510
AWI+ 10					0.943	0.298
AWI+ 100						0.175
AWI+1000						

 Table S6. Mann-Whitney Test *p*-values for Zeta Potential

Table S7. Mann-Whitney Test *p*-values for polydispersity indices

	Initial	AWI -	AWI+	AWI+ 10	AWI+ 100	AWI+1000
Initial		0.210	< 0.0005	< 0.0005	0.022	0.006
AWI-			0.001	0.001	0.002	0.002
AWI+				0.272	< 0.0005	< 0.0005
.AWI+10					< 0.0005	< 0.0005
AWI+ 100						0.707
AWI+1000						

Table S8. Mann-Whitney Test *p*-values for surface tension

	Water only	10 μg CTAC/L	100 µg СТАС/L	1000 µg СТАС/L
Water only		0.001	<0.0005	<0.0005
10 μg CTAC/L			<0.0005	<0.0005
100 µg СТАС/L				<0.0005
1000 µg СТАС/L				

	Water only	10 μg CTAC/L	100 µg СТАС/L	1000 µg СТАС/L
Water only		0.625	0.175	0.082
10 μg CTAC/L			0.138	0.505
100 µg СТАС/L				0.023
1000 µg СТАС/L				

Table S9. Mann-Whitney Test *p*-values for contact angles

Note that all other M-W comparisons with and between 10^4 , 10^5 and $10^6 \mu g$ CTAC/L found significant differences (p < 0.0005).

IV. Comments on DLS measurements of the +AWI (no CTAC)

Number fluctuation refers to variations in the number of particles within the scattering volume during a DLS measurement and can generally be caused by the presence of large particles or aggregates. Here is a correlogram for one of the DLS measurements. The discontinuities in the curve are typical for samples with number fluctuations.

All DLS measurements were performed as soon as possible after the mixing portion of our experiments. Whereas a way to "solve" the number fluctuations issue is to let the sample settle or filter it, we wanted to be consistent in our sampling, rather than processing the +AWI only trials differently from all the other treatments. Regardless of the number fluctuations, this data invariably indicates that the +AWI treatment results in samples and NP aggregation very different from most of the other treatments.