## Piezocatalytic Degradation of 2,4-dichlorophenol in Water Environment by a g-C<sub>3</sub>N<sub>4</sub>/CdS heterojunction catalyst: Interfacial Electric Field Boosting Mechanism

Qingshen He, Yuyan Yi, Renshu Wang, Pengfei Sun\*, Xiaoping Dong\*

Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials

of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China

\* Corresponding author. E-mail addresses: <u>sunpf@zju.edu.cn</u> (P. Sun);

xpdong@zstu.edu.cn (X. Dong)



Fig. S1 Two main piezocatalysis mechanism: (a) the activated electron  $(e^{-})$  and hole  $(h^{+})$  mechanism and (b) the polarization potential mechanism.



Fig. S2 The possible mechanism to explain the decline of piezocatalysis performance.





Fig. S4 Degration of 2,4-DCPs with different reaction conditions.



Fig. S5 Band structures of GCN and CdS



Fig. S6 S-scheme heterojunction of GCN/CdS

| Piezocatalysts                                                                        | Reaction condition                                      | Degrading substance | Degradation<br>efficiency | Catalysis time<br>Volume | Pollutants<br>concentration/<br>Catalyst dosage | Ref.         |
|---------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------|---------------------------|--------------------------|-------------------------------------------------|--------------|
| GCN/CdS-5:5                                                                           | ultrasonic (40<br>kHz, 120 W)                           | 2,4-DCP             | 97%                       | 60 min<br>50 mL          | 20 mg L <sup>-1</sup><br>/50 mg                 | This<br>work |
| 2D g-C <sub>3</sub> N <sub>4</sub>                                                    | ultrasonic (40<br>kHz, 120 W)                           | 2,4-DCP             | 98.5%                     | 150 min<br>25 mL         | 20 mg L <sup>-1</sup><br>/50 mg                 | [1]          |
| g- C <sub>3</sub> N <sub>4</sub>                                                      | Xe lamp<br>(300 W) and<br>ultrasonic (40<br>kHz, 120 W) | 2,4-DCP             | 100%                      | 60 min<br>25 mL          | 20 mg L <sup>-1</sup><br>/50 mg                 | [2]          |
| Bi <sub>3.25</sub> La <sub>0.75</sub> Ti <sub>3</sub> O <sub>1</sub><br>2             | Xe lamp (300<br>W) and<br>ultrasonic (45<br>kHz, 100 W) | 2,4-DCP             | 93.04 %                   | 60 min<br>80 mL          | 15 mg L <sup>-1</sup><br>/70 mg                 | [3]          |
| Au/BiVO <sub>4</sub>                                                                  | ultrasonic (40<br>kHz, 300 W)                           | 4-CP                | 100 %                     | 120 min<br>50 mL         | 0.1 mM<br>/25 mg                                | [4]          |
| BaTiO <sub>3</sub>                                                                    | ultrasonic (40<br>kHz, 110 W)                           | 4-CP                | 71.1 %                    | 120 min<br>25 mL         | 25 mg L <sup>-1</sup><br>/50 mg                 | [5]          |
| Bi <sub>25</sub> FeO <sub>40</sub> /Bi <sub>2</sub> O <sub>2</sub><br>CO <sub>3</sub> | ultrasonic (40<br>kHz, 120 W)                           | 4-CP                | >90 %                     | 120 min<br>50 mL         | 10 mg L <sup>-1</sup><br>/50 mg                 | [6]          |
| Bi <sub>5</sub> Ti <sub>3</sub> FeO <sub>15</sub>                                     | ultrasonic (40<br>kHz, 120 W)                           | Phenol              | 79.3 %                    | 30 min<br>50 mL          | 5 mg L <sup>-1</sup><br>/50 mg                  | [7]          |
| Na <sub>0.5</sub> Bi <sub>0.5</sub> TiO <sub>3</sub>                                  | ultrasonic (40<br>kHz, 80 W)                            | Phenol              | 58.5 %                    | 80 min<br>100 mL         | 5 mg L <sup>-1</sup><br>/100 mg                 | [8]          |
| MoS <sub>2</sub> NFs/PMS                                                              | ultrasonic (40<br>kHz, 300 W)                           | Phenol              | 95 %                      | 180 min<br>100 mL        | 10 mg L <sup>-1</sup><br>/30 mg                 | [9]          |

Table S1 Comparison of piezoelectric catalytic properties of different catalysts.

[1] Lei H., Wu M., Dong X., et al. Efficiently harvesting the ultrasonic vibration energy of twodimensional graphitic carbon nitride for piezocatalytic degradation of dichlorophenols. Environmental Science: Nano, 2021, 8, 1398-1407.

- [2] Lei H., He Q., Wu M., et al. Piezoelectric polarization promoted spatial separation of photoexcited electrons and holes in two-dimensional g-C<sub>3</sub>N<sub>4</sub> nanosheets for efficient elimination of chlorophenols. Journal of Hazardous Materials, 2022, 421, 126696.
- [3] Zhong S., Liu L., Liu G., et al. Piezoelectric polarization promoted separation of photogenerated carriers in Bi<sub>3.25</sub>La<sub>0.75</sub>Ti<sub>3</sub>O<sub>12</sub> with different micro-morphologies for efficient elimination of 2,4-Dichlorophenol and tetracycline. Journal of Cleaner Production, 2022, 373, 133644.
- [4] Wei Y., Zhang Y., Long M., et al. Efficient bifunctional piezocatalysis of Au/BiVO<sub>4</sub> for simultaneous removal of 4-chlorophenol and Cr (VI) in water. Applied Catalysis B: Environmental, 2019, 259, 118084.
- [5] Lan S., Feng J., Xiong Y., et al. Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination. Environmental Science &

Technology, 2017, 51, 6560.

- [6] Jiang T., Wang Y., Guo Z., et al. Bi<sub>25</sub>FeO<sub>40</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> piezoelectric catalyst with built-in electric fields that was prepared via photochemical self-etching of Bi<sub>25</sub>FeO<sub>40</sub> for 4-chlorophenol degradation. Journal of Cleaner Production, 2022, 341, 130908.
- [7] Zhu X., Wu X., Li Y., et al. Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> Nanofibers for Highly Efficient Piezocatalytic Degradation of Mixed Dyes and Antibiotics. ACS Applied Nano Materials, 2023, 6, 5602-5612.
- [8] Huang R., Wu J., Lin E., et al. A new strategy for large-scale synthesis of Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub> nanowires and their application in piezocatalytic degradation. Nanoscale Advances, 2021, 3, 3159-3166.
- [9] Liu S., Jing B., Nie C., et al. Piezoelectric activation of peroxymonosulfate by MoS2 nanoflowers for the enhanced degradation of aqueous organic pollutants. Environmental Science: Nano, 2021, 8,784-794.