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Text S1. Chemical reagents.

Ammonium acetate, urea, Sodium azide (NaN3), L-histidine (AR), humic acid
(HA, AR), Methyl alcohol (MeOH), ethanol (EtOH), isopropanol (IPA), tert-butanol
(TBA) were obtained from were purchased from Aladdin Co., Shanghai, China.
Ultrapure water (18.2 MQecm) was used as a solvent in the adsorption experiment.
Nitrogen (N3, 99.99%), Oxygen (O,, 99.99%) were purchased from Air Liquide. All

chemicals were used as received without further purification.

Text S2. Characterization of photocatalysts.

X-ray diffractometer (XRD, Japan, Ultima VI) with Cu Ko radiation was
employed to obtain the crystal structure. Scanning electron microscopy (SEM, Hitach
SU8220) and transmission electron microscrpy (TEM, FEI, Thermo, Talos F200S)
were utilized to investigate the morphology of the photocatalysts. The Brunauer-
Emmett-Teller (BET) surface areas were measured by N, adsorption-desorption
isotherms (Micromeritics, ASAP 2460). X-ray photoelectron spectroscopy (XPS,
Thermo-Fisher, Escalab 250Xi) and element content analysis (OEA, Vario EL cube)
were carried out to explore the surface and elemental composition. The stretching
vibration of chemical bonds were measured on an fourier transform infrared
spectrophotometer (FT-IR, Themor-Filsher, iIS50R) with KBr as the reference. ESR
signals were surveyed at ambient temperature by using a Bruker ESR A300
spectrometer. A UV-vis spectrometer (Shimadzu UV-3600) (BaSO, as a reference
background) was used to measure the optical behavior. A transient fluorescence
spectrophotometer (Edinburgh FS5; England) was used to investigate the time-resolved
photoluminescence emission spectra (TRPL) and photoluminescence spectra (PL).
Photocurrent measurements were carried out using an electrochemical workstation
(CHI-760E, Shanghai, China). Total organic carbon (TOC) was measured by a TOC
analyzer (TOC-VCPH E200V, Japan).
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Text S3. Photocatalytic experiments under solar irradiation.

30 mg of ACN2 was dispersed in 50 mL of the DCF solution (6 mg/L). The
suspensions were stirred in the dark for 30 min to reach adsorption-desorption
equilibrium, and then 0.6 mmol PDS was added to the mixture when exposed to
sunlight. The magnetic stirrer was used to ensure well-mixed conditions. Tests were
conducted from 12:00 a.m. to 13:00 p.m. on sunny days in July 7 in 2023 in Guangzhou,
China (N 23.04°, E 113.40°), the temperature was 28 &= 3 °C.

Text S4. Photo-electrochemistry test.

All electrochemical measurements were carried out using a CHI 760e
electrochemical workstation (Chenhua Shanghai, Inc.) with a conventional three-
electrode system in 0.1 M Na,SO, electrolyte. An Ag/AgCl electrode, a platinum plate
electrode, and an ITO electrode deposited with photocatalysts were used as the

reference electrode, the counter electrode and the working electrode, respectively.

Text S5. Electron paramagnetic resonance test.

The determination of reactive species was performed using the electron
paramagnetic resonance (EPR) with BRUKER model A300 measurements technique.
EPR technique was utilized for the estimation of reactive species with 5,5-dimethyl-1-
pyrroline-Noxide (DMPO) for the identification of sulfate radical (SO, ) and hydroxyl
radicals (*OH), and 2,2,6,6-tetramethyl-4-piperidinol (TEMP) for '0,.
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Table S1. N/C and O/C atomic rations of CN and ACN2 determined using an organic

elemental analyzer (OEA) and by XPS.

OEA XPS
Sample
N/C o/C N/C o/C
CN 1.75 0.44 0.5 0.13
ACN2 1.72 0.44 0.44 0.14
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Table S2. The position of N and atomic ratio for CN and ACN2 samples.

Sample Functional group Position (eV) Atomic %
NHx 400 17.5
CN Nsc 399.2 4.3
Nac 397.8 78.2
NHx 400.1 16.5
ACN2 Nsc 399.3 3.7
Nac 397.8 79.8
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Table S3. Second order rate constant between organics and ROSs.

k(COHYM! kXSO )M k('05)/M? ky(O57)/M!

Organics o o o o Ref.
BA 4.2 x10° 1.2 x10° - - 1
NB 3.9 x10° <106 - - 1
FFA 1.5 x 1010 - 1.2 x 108 . 2,3
NBT - - - 5.8 x 10* 4
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Table S4. Kinetic analysis of emission decay for the CN and ACN2.

Sample 7;(ns) Rel.% 17,(ns) Rel.% 73(ns) Rel.% ;’l';;
CN 0.67 22.18 2.62 42.46 9.92 35.35 4.77
ACN2 0.17 59.88 1.47 25.44 6.32 14.68 1.40
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Fig. S1. (a) SEM and (b) TEM of CN.
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Fig. S2. (a) Nitrogen adsorption-desorption isotherms, (b) XPS survey spectra, (c) C

Is XPS spectra, and (d) EPR spectra of CN and ACN2.
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Fig. S3. (a) Effects of ammonium acetate concentration, (b) DCF concentration, (c)

ACN2 concentration, and (d) PDS concentration on DCF degradation in PDS/ACN2

system.
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Fig. S4. (a) XRD patterns and (b) FTIR spectra for fresh and used ACN2.
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Fig. SS. DCF degradation intermediates in the ACN2/PDS system.
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Fig. S6. (a) Quenching experiments of MeOH and TBA with different concentrations;
(b) EPR spectra of *OH, SO4, and 'O, in ACN2/PDS/DCF system; (¢) removal of
DCF under the different concentrations of FFA. Experimental conditions: [DCF]y =6

mg/L; [catalyst], = 0.6 g/L; [PDS]y, = 0.6 mM; [pH], = 5.6.

ESR experiments using 2,2,6,6-Tetramethyl-4-piperidinol (TEMP) as a spin trap
for capturing 'O, was then performed to provide more evidences.® Interestingly, a
strong triplet signal corresponding to TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl)
was observed, which was always attribute to the formation of TEMP-10, adducts (Fig.
Sé6b). This is contrary to the results of quenching experiment. Previous studies have
demonstrated that a single electron transfer reaction can occur between TEMP and
excited sensitizers to form TEMP*, which could also generate TEMPO after
deprotonation and reaction with dissolved oxygen.® Therefore, the TEMPO signal

observed in the ACN2/PDS system may not indicate the formation of 'O,.
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Fig. S7. Degradation performances of DCF in D,0 and H,O.

The degradation rate of DCF in D,0O did not increase than in H,O, which was
inconsistent with the usual behavior as the lifetime of 'O, in D,O (60 us) is more than
15-fold longer than in H,O (4 us).” It was concluded that 'O, was not generated during

the activation of PDS in the ACN2/PDS system.
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Fig. S8. Premixing ACN2 and PDS on DCF degradation.
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Fig. S10. UV-vis diffuse reflectance spectra of CN and ACNx samples.
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Fig. S11. (a) XPS valence band spectra, (b, c) Mott-Schottky plots, and (d) band gap
structures of CN and ACN2.

The corresponding band gaps are determined from the intercept of tangents to the
plot of (ahv)!? vs. photoenergy (inset in Fig. 6a). ®° The bandgap (Eg) of ACN2 was
calculated to be about 2.35 eV, which is 0.18 eV less than that of pristine CN (2.53 eV).
In order to define the corresponding conduction band (CB) and valence bands (VB)
position, Mott-Schottky plots and VB-XPS spectra were performed (Fig. S11 a-c).!°
The flat-band potentials of pristine CN and ACN2 are -1.12 and -0.43 V versus
Ag/AgCl or-0.92 and -0.23 V versus NHE, respectively. Furthermore, combining with
the result of VB-XPS spectra, the (VB) can be estimated to be +0.95 V versus NHE for
pristine CN and +1.7 V versus NHE for ACN2. Therefore, in combination with the
DRS results above, the CB position of CN and ACN2 are -1.58 and -0.65 V (Vs. NHE),

respectively.
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Fig. S12. Photoluminescence spectra of CN and ACNx samples.
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