Supporting Information

Behaviour of Advanced Materials in environmental aquatic media -Dissolution kinetic and dispersion stability of perovskite automotive catalysts

Veronica Di Battista,^{a,b} Kai Werlea, Lars Michael Skjolding^b, Wendel Wohlleben^a and Anders Baun^{b*}

^a BASF SE, Material Physics, Carl Bosch Straße, Ludwigshafen, Germany; DTU

^b Department of Environmental and Resource Engineering, Building 115, Technical University of Denmark, Kgs. Lyngby, Denmark.

Table of Contents

Fig. S1 (a)Uv-vis absorption spectrum of LaCoNi; (b) DLS of LaCoNi stock dispersion in water; (c) XRD	
spectrum showing the perovskite-like crystal lattice ABO ₃ , with minor phases of La ₂ O ₃ and La(OH) _{3;} (d)XPS	
analysis of LaCoNi showing Nickel enrichment in surface composition. (e), (f) and (g) are SEM images of LaCoN	Ji,
LaCoNi_Pd, LaCoNi_Pt, respectively	.3
Fig. S2 Log-log linear dependency of Dissolution rates vs SA/V	.3
Fig. S3 Dispersion stability of LaCoNi under TG318 conditions	.4
Table S1 Basic perovskites physicochemical properties	.5
Table S2 Dissolution rates at different flow rates and amount of loaded material in EPAs	.5

Fig. S1 (a)Uv-vis absorption spectrum of LaCoNi; (b) DLS of LaCoNi stock dispersion in water; (c) XRD spectrum showing the perovskite-like crystal lattice ABO₃, with minor phases of La_2O_3 and $La(OH)_{3}$; (d)XPS analysis of LaCoNi showing Nickel enrichment in surface composition. (e), (f) and (g) are SEM images of LaCoNi, LaCoNi_Pd, LaCoNi_Pt, respectively.

Fig. S2 Mass loss in time expressed in Undissolved metal percentage. Data are reported for EPAs in both dry loading and injection methods; from the left: ZnO, BaSO₄, LaCoNi.

Fig. S3 Log-log linear dependency of Dissolution rates vs SA/V

Fig. S4 Dispersion stability of LaCoNi under selected TG318 conditions

Table S1 Basic perovskites physicochemical properties: BET surface area, Min Feret diameter from SEM images, ICPMS characterization of the pristine particles, including dopants.

			ICP-MS					
Material	BET	Min Feret diameter	Co/wt	La/wt	Ni/wt	Pd/wt	Pt/wt	
	(m^{2}/g)	in nm (SEM)*	%	%	%	%	%	
LaCoNi	3.8	96.1	12.0	60	8.0	n.d.	n.d.	
LaCoNi_Pd	2.3	206.5	12.0	60	7.9	0.59	n.d.	
LaCoNi_Pt	4.6	106.6	12.0	60	7.5	n.d.	1.1	

* $\sigma_g = 1.05$

Table S2 Dissolution rates at different flow rates and amount of loaded material in EPAs

	Flow rate (mL/min)	ZnO_1µg	ZnO_10µg	ZnO_100µg	ZnO_256µg	BaSO ₄ _1µg	BaSO4_10µg	BaSO ₄ _100µg	LaCoNi_10µg	LaCoNi_100µg
Dissolution rate k [µg.m ⁻² .s ⁻¹]	1	11.3±0.6	3.32±0.3	0.85±0.10	0.42±0.12	3.71±0.4	0.12±0.08	0.024±0.004	0.37±0.06	0.031±0.008
Dissolution rate k [µg.m ⁻² .s ⁻¹]	0.5	5.57±0.5	2.29±0.1	0.68±0.11	0.36±0.12	1	1	1	1	1
Dissolution rate k [µg.m ⁻² .s ⁻¹]	0.1	1	1.86±0.06	0.42±0.01	1	1	0.085±0.009	0.016±0.001	0.042±0.003	0.022±0.003

*dissolution rates are the average rates prior reaching 10% of undissolved single metal ion, according to Keller et al. 2020