Supporting Information

Selective Metal Recovery by Mucin: Turning Gold from Wastewater into a Peroxymonosulfate-activated Catalyst

Shira Gavriely^{1,2}, Shachar Richter^{1,2}, Ines Zucker^{3,4}

¹ Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

² University Center for Nano Science and Nanotechnology
 ³ School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

⁴ The Porter School of Environmental and Earth Sciences, Tel Aviv University, 69978, Israel

* Corresponding author; Address: Tel Aviv University, Tel Aviv 69978, Israel; Tel: (+972) 73-3804581; email: ineszucker@tauex.tau.ac.il

Figure S1. Fe^{3+} vs. Fe^{2+} removal by 0.1 g L⁻¹ mucin in a 0.05 mM solution for each ion.

Figure S2. Kinetics of metal removal in the mixed-metal solution during 200 hr.

Figure S3. UV-VIS spectra of Au nanoparticles formation with mucin over several time points.

Figure S4. Scanning electron microscopy image in back-scattered mode of Au nanoparticles formed in the isolated Au metal solution.

Figure S5. Au nanoparticles formation with the presence of (A) small cations (Na⁺, Ca²⁺, K⁺) and mucin. (B) Organic substances (CBZ and humic acid) with and without mucin.

Figure S6. SEM image of mucin-based nanofibers.

Figure S7. XPS of (A) Cu and (B) Al in the mixed-metal solution after adsorption test with mucin NFs.

Figure S8. Effect of initial pH on the removal of BPA in the presence of Au@mucin catalyst and PMS.

Table S1. Second-order Kinetics values for Au adsorption by mucin, calculated with the equation: $q_{(t)} = \frac{q_e^2 * k_2 * t}{1 + q_e * k_2 * t}$

		0.025 mM	0.05 mM	0.1 mM
k ₂	[g/mg/hr]	0.00187	3.21199E-4	7.57026E-5
q _e	[mg g ⁻¹]	17.22575	64.81353	156.35628
R ²	-	0.969837	0.990882	0.995377

Table S2. Reduction potentials of metals

(Petr Vanýsek, in *CRC Handbook of Chemistry and Physics*, ed. William M. Haynes, 92th edn., 2011)

Reaction	Potential (E ⁰ vs. SHE, eV)
$2RSH \rightarrow RS - SR + 2H^+ + 2e^-$	-0.318
$Au^{3+} + 3e^- \rightarrow Au$	1.498
$Pd^{2+} + 2e^{-} \rightarrow Pd$	0.951
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.771
$Cu^{2+} + 2e^{-} \rightarrow Cu$	0.3419
$Fe^{3+} + 3e^- \rightarrow Fe$	-0.037
$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.447
$Al^{3+} + 3e^{-} \rightarrow Al$	-1.662

Name	Peak BE	FWHM eV	Area (P) CPS.eV	Atomic %
C 1s	285.23	3.25	873209.41	70.71
O 1s (~8% area is Pd 3p3)	532.40	3.41	744047.87	23.73
N 1s	399.90	3.02	65916.00	3.36
Fe 2p	711.91	6.02	150920.93	1.09
Р 2р	133.56	1.61	9770.52	0.55
Au 4f7	84.12	2.34	46806.63	0.30
Pd 3d5	338.23	2.32	36060.75	0.26

 Table S3. Chemical elements from XPS analysis before EDTA cleaning

Table S4. Chemical elements after EDTA cleaning

Name	Peak BE	FWHM eV	Area (P) CPS.eV	Atomic %
Au 4f	85.52	7.43	216238.56	0.30
N 1s	399.93	3.78	29209.61	0.59
0 1s	532.24	4.75	1948135.44	24.61
C 1s	285.06	5.27	2361583.24	74.51