Electronic Supplementary Information for:

Fluorescent graphene quantum dots-enhanced machine learning for accurate detection and quantification of Hg²⁺ and Fe³⁺ in real water samples.

Mauricio Llaver,^{a,*} Santiago D. Barrionuevo,^b Jorge M. Núñez,^{c,d,e,f,g} Agostina L. Chapana,^a Rodolfo

G. Wuilloud,^a Myriam H. Aguirre^{f,g,h} and Francisco J. Ibañez^{b,*}

^a Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo / Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500) Mendoza, Argentina.

^b Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA). Universidad Nacional de La Plata - CONICET. Sucursal 4 Casilla de Correo 16 (1900) La Plata, Argentina.

^c Resonancias Magnéticas-Centro Atómico Bariloche (CNEA, CONICET), S. C. Bariloche 8400, Río Negro, Argentina.

^d Instituto de Nanociencia y Nanotecnología, CNEA, CONICET, S. C. Bariloche 8400, Río Negro, Argentina.

^e Instituto Balseiro (UNCUYO, CNEA), Av. Bustillo 9500, S.C. de Bariloche 8400, Río Negro, Argentina.

^{*f*} Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.

^{*g*} Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.

^h Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.

e-mail: <u>mllaver@mendoza-conicet.gob.ar</u> e-mail: <u>fjiban@inifta.unlp.edu.ar</u> **S1.** The output files from the experimental obtention of the excitation-emission matrices (EEMs) with known Hg^{2+} and Fe^{3+} concentrations had to be pre-processed prior to the application of the machine learning models used for the prediction of analyte concentrations in real samples.

Figure S1. Schematic representation of the data handling process.

S2. Additional XPS. To complement the characterization of the urea-modified graphene quantum dots (uGQDs) and 1-nitroso-2-naphthol-modified NN-uGQDs, X-ray photoelectron spectra of pristine 1-nitroso-2-naphthol (NN).

Figure S2. Top: C 1s, O 1s and N 1s XPS spectra for pristine NN, including the deconvolution of the instrumental signal.

S3. Excitation Emission Matrix (EMM) for GQDs synthesized without urea. The EMMs for graphene quantum dots (GQDs) synthesized without urea, as control, show similarities with that of urea-modified graphene quantum dots. The main difference between both cases is the EMM observed for uGQDs with an excitation wavelength of 315 nm, which is not presence in the case of GQDs.

Figure S3. Excitation-emission matrix (EMM) for as-synthesized graphene quantum dots. The main high-intensity emission resulting from scattering (when $\lambda_{exc} = \lambda_{em}$) has been whitened to improve visualization.

S4. The EMMs of 1-nitroso-2-naphthol-modified nitrogenated graphene quantum dots (NN-uGQDs), in the presence of 0.20 mg L^{-1} of both Hg²⁺ and Fe³⁺, show significant differences in the emission profile. These differences were key for the application of the developed machine learning model, used for the simultaneous prediction of Hg²⁺ and Fe³⁺ concentrations in unknown samples.

Figure S4. EMM spectra for 1-nitroso-2-naphthol-modified nitrogenated graphene quantum dots before (m-NGQDs, shown on top) and after the addition of 0.20 mg L⁻¹ of Hg²⁺ (middle) and Fe³⁺ (bottom).

S5. Response time. The response time of the probe differed for the studied analytes, having Hg^{2+} and immediate effect on the emission, while Fe³⁺ took 15 min to produce its full quenching effect.

Figure S5. Relative EMM intensity of 1-nitroso-2-naphthol-functionalized N-doped graphene quantum dots as a function of time after the addition of 0.35 mg mL⁻¹ of Hg²⁺, 0.50 mg mL⁻¹ Fe³⁺ and 0.35 mg mL⁻¹ of Hg²⁺ + 0.50 mg mL⁻¹ Fe³⁺. The spectra taken at time = 0 has been considered as the reference emission intensity (I_0) and n = 3.

S6. Table comparing different Fluorescent Sensors

Fluorescence	Synthesis method	Linear range	LOD		Real	
Sensor			Hg^{2+}	Fe ³⁺	Samples	Reference
Glutathione- doped GQDs	Pyrolysis	1-150 µM	-	0.10 µM	Drinking water	1
N-doped GQDs	Hydrothermal	0-30 µM	0.25nM	-	River water	2
P, N-doped GQDs	Pyrolysis	Not reported	0.13 µM	-	Natural spring wáter, river wáter and serum sample	3
GQDs	Pyrolysis	0–60 nM	-	0.024 nM	Drinking water	4
NN-u-GQDs	Electrochemic al exfoliation from 3D graphene	0-0.02 μM 0-0.08 μM	0.005 μΜ	0.017 μΜ	Tap water, river wáter and dam wáter	This work

Table S1. Comparison of the hereby presented results with other recently published GQD-based fluorescence sensors for Hg^{2+} and Fe^{3+} determination.

S7. Instrumental conditions for the determination of Hg^{2+} in water samples by cold vapor-atomic fluorescence spectrometry. All measurements were carried out on samples that were previously acidified with HNO₃ up to a final concentration of 1.0 mol L⁻¹. The calibration curve was obtained using standard samples prepared in 1.0 mol L⁻¹ HNO₃. On the other hand, the spectrophotometric method used for Fe³⁺ determination was based on a liquid-liquid extraction using ethyl acetate, after addition of KSCN as complexing and chromogenic reagent.

AFS instrumental conditions				
Wavelength	257.3 nm			
Measurement mode	Peak height			
Primary lamp current	8.0 mA			
Atomizer temperature	300 °C			
Boost current	0			
PMT voltage	240 V			
Cold vapor generation conditions				
Sample volume	2.0 mL			
Carrier	1.0 mol L ⁻¹ HNO ₃			
Carrier flow rate	4.0 mL min ⁻¹			
Reductant	0.5% (w/v) NaBH ₄			
Reductant flow rate	4.0 mL min ⁻¹			
Carrier gas and flow rate	Ar, 500 mL min ⁻¹			

Table S2. Instrumental conditions for the determination of Hg²⁺ in water samples by cold vaporatomic fluorescence spectrometry.

Figure S6. Calibration curves for Hg²⁺ (above) and Fe³⁺ (below) are presented, corresponding to the spectrophotometric and CV-AFS measurements utilized in the validation process.

References

- Saenwong, K.; Nuengmatcha, P.; Sricharoen, P.; Limchoowong, N.; Chanthai, S. GSH-Doped GQDs Using Citric Acid Rich-Lime Oil Extract for Highly Selective and Sensitive Determination and Discrimination of Fe3+ and Fe2+ in the Presence of H2O2 by a Fluorescence "Turn-off" Sensor. *RSC Advances* 2018, 8 (18), 10148–10157. https://doi.org/10.1039/c7ra13432k.
- (2) Xiong, Z.; Zou, Y.; Cao, X.; Lin, Z. Color-Tunable Fluorescent Nitrogen-Doped Graphene Quantum Dots Derived from Pineapple Leaf Fiber Biomass to Detect Hg2+. *Chinese Journal of Analytical Chemistry* **2022**, *50* (2), 69–76. https://doi.org/10.1016/j.cjac.2021.10.003.
- (3) Şenol, A. M.; Kassa, S. B.; Onganer, Y. A Simple Fluorescent "Turn off-on" Sensor Based on P, N-Doped Graphene Quantum Dots for Hg2+ and Cysteine Determination. *Sensors and Actuators* A: Physical 2023, 356, 114362. https://doi.org/10.1016/j.sna.2023.114362.
- (4) Mandal, D.; De, P.; Khatun, S.; Gupta, A. N.; Chandra, A. Highly Fluorescent Graphene Quantum Dots as "Turn off-on" Nanosensor for Detecting Toxic Metal Ions to Organic Pollutant. *Int. J. Environ. Sci. Technol.* 2024, 21 (2), 1637–1648. https://doi.org/10.1007/s13762-023-05033-1.