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Figure S1 Particle size measured by DLS



Figure S2 EDS spectra of LML-Tb3+-AMP NPs



Figure S3 EDS mapping results of LML-Tb3+-AMP NPs. (A) O, (B) P, (C) C, (D) Tb, 

(E) N, (F) SEM image of LML-Tb3+-AMP NPs. 



Figure S4 XRD pattern of LML-Tb3+-AMP NPs.



Figure S5 (A) Effect of pH on the fluorescence ratio (F545/F425) of LML-Tb3+-AMP in 

the absence and presence of DPA. (B) Effect of equilibrium time on the fluorescence 

ratio (F545/F425) in the LML-Tb3+-AMP system.



Figure S6 Schematic illustration of the (A) fabrication and composition, and (B) use 

of the portable detection device.



Figure S7 The RGB values recognized by smartphone APP (A and B) (the photograph 

was taken under 254 nm UV lamp). 



Figure S8. (A) SEM image of LML-Tb3+- AMP/AG film. (B) UV-vis spectra of LML-

Tb3+- AMP/AG film. Inset: Image of the hydrogel sensor.

 



Table S1 The singlet and triplet energy levels of DPA and the lowest emission level 

of Tb3+.

The lowest emission levels of Ln3+ were obtained from ref. [1]

S1: Lowest excited singlet; T1: Lowest excited triplet; ∆EST: The energy gap between 

S1 and T1; ∆ETD-Tb: the energy differences between the lowest triplet excited state of 

sensitizer and the emission levels of Tb3+.



Table S2 Comparison in the sensitivity performance for DPA detection between the 

proposed method and the previously reported methods. 



Table S3 Determination of DPA in real samples

Samples Added 

(M)

Found (M) Recovery (%) RSD (%)

Lake water 1 0.00 NDa — —

0.50 0.51 110.0 2.8

5.00 5.12 103.7 0.4

Lake water 2

water

0.00 NDa — —

0.50 0.49 97.9 1.6

5.00 5.01 100.2 0.8

a Not detected.



Table S4 Comparison in the sensitivity performance for DPA detection between the 

proposed method and the previously reported smartphone-based sensing method.

Sensing system Mode Linear range LOD Ref.

EBT @ CDs/Eu3+ Ratiometric 0-12μM 0.68μM [3]

g-C3N4-Eu3+-Cit Ratiometric 0-20μM 2.5μM [8]

Tb-PTA-OH Ratiometric 0-40 μM 0.48μM [9] 

Tb-GSH-CuNCs Turn-on 0.5-70μM 0.5μM [10] 

Tb3+@JUC-505 Turn-on 0-100μM 2.17μM [11] 

HAp:Tb-EDTA Ratiometric 0.1-500 μM 0.5μM [12] 

UiO-66-NH2/Eu Ratiometric 0-35μM 0.52μM [13] 

Eu-MOF@Tb Ratiometric — 2μM [14] 

LML-Tb3+-AMP Ratiometric 0–100 μM 0.24μM This work
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