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Text S1. Characterizations

The hydrodynamic size and zeta potential (ζ) of the MoS2 nanosheets were 

determined using a Zetasizer instrument (NanoBrook Omini, Brookhaven, U.S.A.). For 

the size of MoS2 testing, about 2 mL 30 mg/L of MoS2 aqueous solution were added to 

plastic cell and according to the Stokes-Einstein formula to calculate the particle size. 

For the zeta potential (ζ) of the MoS2 nanosheets testing, the palladium electrode was 

inserted into a quartz cell with 2 mL 30 mg/L of MoS2 diluted with ultrapure water, 

based on the Smoluchowski formula to obtain the zeta potential value of MoS2. 

The morphologies of the MoS2 nanosheets were characterized using transmission 

electron microscopy (TEM, Talos F200X, FEI, U.S.A.) and atomic force microscopy 

(AFM, MFP-3D Stand Alone, Asylum Research, U.S.A.). The exfoliated MoS2 

nanosheets were dispersed in ethanol and ultrasonicated for 10 min. Before TEM 

testing, the sample was firstly dropped onto the copper grid with carbon support and 

dried to keep the residual particles attached to the grid. Subsequently, the sample was 

measured by a microscope equipped with a Schottky emitter gun operated (at 200 kV). 

For AFM testing, the distributed MoS2 nanosheets in ethanol were dropped onto a 

silicon wafer, then measured with an AC mode through Micro Cantilevers probe tip 

(240AC-NA, 70 kHz 2N/m) and AFM image was obtained by MFP-3D Stand Alone.

X-ray photoelectron spectroscopy (XPS, PHI 5000 Versaprobe III spectrometer, 

ULVAC-PHI, Japan) and Raman spectrometer (HORIBA LabRAM HR Evolution, 

Japan) were used to analyze the phase and chemical composition of the MoS2 

nanosheets. The samples were collected by filtration, and then dried in a vacuum freeze-
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tryer. For XPS testing, the samples were firstly deposited on conductive adhesive, then 

using high-resolution scans with a PHI 5000 VersaProbe III equipped with a 

monochromatic Al anode (Al Kα = 1486.7 eV) as an X-ray source to measured. For 

Raman testing, the samples were firstly deposited on glass slides, the spectra recorded 

by s LabRAM HR Evolution micro confocal Raman spectrometer with a 532 nm 

excitation laser. To real the complexation of Hg and NOM, solution-phase attenuated 

total reflectance Fourier Transform Infrared (ATR-FTIR) (Bruker Vertex 70v, 

Germany) spectroscopy measurements were conducted before and after Hg 

complexation with NOM through a diamond sample stage. 

Text S2. Mercury uptake isotherms with different NOM concentration

Batch uptake isotherm tests were performed in the same Teflon vials, maintaining 

a fixed MoS2 concentration of 4 mg/L, while varying initial Hg concentration from 0 to 

45 mg/L and the NOM concentration at 0, 3, and 20 mg/L. After 24 hours of 

equilibration, the samples were filtered through 0.22 μm PTFE filters, and the filtrates 

were analyzed with a direct mercury analyzer (DMA-80, Milestone, Italy). The 

isotherm data was fitted with the classical Langmuir model (Eq. (1)):

                              (1)
𝑞𝑒=

𝑞𝑚𝐾𝐿𝐶𝑒
1 + 𝐾𝐿𝐶𝑒

where qe (mg/g) and Ce (mg/L) are the equilibrium Hg uptake capacity and the 

equilibrium Hg concentration, qm (mg/g) is the maximum removal capacity, KL (L/mg) 

is the Langmuir affinity constant.
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Text S3. Separate Hg-NOM with the Amico Ultra-15 centrifugal filters

In order to quantify the Hg complexation by different fraction of NOM, an 

ultrafiltration membrane was used to separate Hg-NOM and free Hg. Firstly, a series 

of Amico Ultra-15 centrifugal filters with decreasing molecular weight cut-offs 

(MWCO) of 100 KDa, 30 KDa, 10 KDa, and 3 KDa were used to separate pristine 

NOM for obtained NOM MW fractionation (i.e., > 100 KDa, 30–100 KDa, 10–30 KDa, 

3–10 KDa, <3 KDa). Subsequently, NOM with different molecular weights (> 100 

KDa, 30–100 KDa, 10–30 KDa, 3–10 KDa) is mixed with Hg (10 mg/L of TOC, 0.5 

mg/L of Hg), and then subjected to centrifugation in their respect MWCO membrane. 

The concentration of Hg in filtrate was determined by a direct mercury analyzer. In the 

control experiment, Hg solution without NOM was filtered by ultrafiltration 

membranes in the same condition.



6

Table S1. Pseudo-first-order and pseudo-second-order models for simulating Hg 
removal kinetics and the corresponding parameters. 

NOM 
concentration 

(mg/L)
Kinetic models Parameters R2

K1 (h-1) qe (mg/g)
Pseudo-first-order

0.37 3053.4
0.987

K2 (g/(mg•h)) qe (mg/g)
0 

Pseudo-second-order
0.002 5000

0.999

K1 (h-1) qe (mg/g)
Pseudo-first-order

0.7 1032.6
0.89

K2 (g/(mg•h)) qe (mg/g)
20 

Pseudo-second-order
0.0005 2000

0.996

Table S2. Regression parameters of sorption isotherm data of Hg onto MoS2 
nanosheets by Langmuir models in the presence of NOM.

NOM concentration (mg/L) Parameters R2

qm (mg/g) KL (L/mg)
0

5376.20 1.93
0.98

qm (mg/g) KL (L/mg)
3

1963.40 20.93
0.87

qm (mg/g) KL (L/mg)
20

1536.40 2.94
0.97
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Fig. S1. The concentration of Hg in the filtrate after filtration through 0.22 μm PTFE 
filter: (a) at different initial Hg concentration in the absence of NOM; and (b) at 
different NOM addition, with the constant Hg concentration at ~18 mg/L. 

Fig. S2. The experimental set-up for Hg0 collection. The reaction unit contained MoS2 
and Hg(II); KMnO4 solution was prepared with 0.024% (w/v) KMnO4 in 4% (v/v) 
H2SO4.
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Fig. S3. The reduction of Hg(II) by SnCl2 to verify the recovery efficiency of Hg in 
the experimental device.
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Fig. S4. Comparison of Hg in solids determined quantitatively by two methods.
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Fig. S5. The particle size distribution of the MoS2 nanosheets.
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Fig. S6. Fitting results of Hg removal kinetics by Pseudo-first-order (a) and pseudo-
second-order (b).
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Fig. S7. Isotherm of Hg uptake by MoS2 fitted with Langmuir model at different NOM 
concentration, initial Hg concentration was 0–45 mg/L, MoS2 concentration was 4 
mg/L.
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Fig. S8. (a) The removal efficiency of Hg by MoS2 and the release of MoO4
2- at various 

Hg/MoS2 molar ratios. (b) The removal capacity of Hg by MoS2 at various Hg/MoS2 
molar ratios. 
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Fig. S9. The control test of Hg(II) reduced by N2. 
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Fig. S10. Mo 3d XPS spectra of Hg-laden MoS2 in the presence of NOM, at a Hg/MoS2 
molar ratio of 4.0.
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Fig. S11. XRD spectra of Hg-laden MoS2 in the presence of NOM, at a Hg/MoS2 molar 
ratio of 4.0.
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Fig. S12. The release of MoO4
2- after Hg removal by MoS2 at the Hg/MoS2 ratio of 4.0.
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Fig. S13. The release of MoO4
2- after Hg removal by MoS2 at various Hg/MoS2 molar 
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Fig. S14. Effect of NOM on the size and zeta potential of MoS2.

200 300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
bs

or
ba

nc
e

Wavelength (nm)

 MoS2
 NOM
 Mixture
 MoS2+NOM

Fig. S15. Ultraviolet-vis spectra of MoS2, NOM, and their mixture (solid lines). The 
dash line represents sum of the NOM and MoS2 absorbance at each wavelength. 
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Fig. S16. The influence of different NOM fraction on Hg complexation.
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Fig. S17. Effect of HA and FA on the removal of Hg(II) by MoS2 at a Hg/MoS2 ratio 
of 4.0.


