Electronic Supplementary information

A novel bio-template route to synthesize enzyme-

immobilized MOF/LDHs tubular magnetic micromotors and their application in water treatment

Xiaohan Yang, Chenzhang Liu, Shuo Gao, Xiaolei Zhang, Ziwei Lan, Min Zuo, Jia Li¹ School of Material Science and Engineering, University of Jinan, Jinan, China

120000 (b) **(a)** 8000 Mg oxide 2p_{3/2} 2p_{3/2} (1303.9eV) 100000 (73.4eV) (74.4e) Intensity (a.u.) 0009 Intensity (a.u.) 80000 60000 2000 Mg 1s l 2p 40000 1308 1306 1304 1302 1300 74 70 78 76 72 68 Binding energy (eV) Binding energy (eV)

1. Figures

Fig. S1 XPS spectra of Al 2p (a), Mg 1s (b).

Fig. S2 UV-Vis absorption spectra of HRP enzyme tested by the Kaumas Brilliant Blue method (a) and its standard curve (b).

¹ Corresponding author. E-mail: mse_lij@ujn.edu.cn (J. Li).

Fig. S3 Effect of different chromogenic substrates, time (a), pH (b), catalyst concentration (c), TMB concentration (d), temperature (e) and H_2O_2 concentration (f) on the chromogenic reaction system.

Fig. S4 Degradation rates of catechol, hydroquinone, and tetrabromobisphenol A under the same conditions.

Fig. S5 Manganese ion leaching during degradation (a), iron ion leaching (b), zinc ion leaching (c).

Fig. S6 Effect of adding MgAl-LDH/MFZ@HRP micromotor on COD removal efficiency of catechol practical wastewater.

Fig. S7 XPS plots of degraded MgAl-LDH/MFZ@HRP micromotors, full spectrum (a), Mn (b), Fe (c).

2. Table

Table S1 Pore texture parameters of the obtained samples

Sample	SBET (m ² g ⁻¹)	VTotal (cm ³ g ⁻¹)	Dp (nm)
Mn ₂ O ₃ /C	44.929	0.160341	14.4125
MgAl-LDH	65.7686	0.157659	10.5368
MgAl-LDH/MFZ@HRP	110.6669	0.25114	8.6179

Table S2 Comparison of speed with other reported micromotors

Micromotors	Concentration of H ₂ O ₂	Velocity (µm s ⁻¹)	Ref.
CuS@Fe ₃ O ₄ /Pt	5%	423.8	1
Magnetic illite microspheres	5%	100.38	2
MnO ₂ microparticles	5%	128	3
Au/ Ni/Pt	5%	37.57	4
Fe-zeolite	10%	84.96	5
rGO/ZnO/BiOI/Co-Pi/Pt	5%	63.1	6
PAPBA/Ni/Pt	3%	40	7
MgAl-LDHs/MFZ	3%	128.33	This work

Table S3 Comparison of various sensor platforms for the detection of catechol

Method	System	LOD (µM)	Linear(µM)	Ref.
Electrochemical	AuNP-MoS ₂ -Lac/GCE	2.0	2-2000	8
Electrochemical	FYSSns-2-Lac/GCE	1.6	12.5-450	9
Electrochemical	Fe ₃ O ₄ -GO-AuNPs	0.8	2-145	10
Colorimetric	ТМВ- δ -MnO ₂	0.22	0.5-10	11
Colorimetric	Co _{1.5} Mn _{1.5} O ₄	0.35	1-1000	12
Colorimetric	MgAl-LDH/MFZ@HRP	0.69	0-200	This work

 Table S4 Comparison of COD before and after degradation of actual catechol

 wastewater

Actual water sample status	Testing Program	Test results (mg/L)
pre-degradation	CODCr	192.23
after degradation		49.21

References

- E. H. Ma, K. Wang, Z. Q. Hu and H. Wang, Dual-stimuli-responsive CuS-based micromotors for efficient photo-Fenton degradation of antibiotics, *J. Colloid Interface Sci.*, 2021, 603, 685-694.
- 2. C. W. Park, T. Kim, H. M. Yang, Y. Lee and H. J. Kim, Active and selective

removal of Cs from contaminated water by self-propelled magnetic illite microspheres, *J. Hazard. Mater.*, 2021, **416**, 8.

- J. Tesar, M. Ussia, O. Alduhaish and M. Pumera, Autonomous self-propelled MnO₂ micromotors for hormones removal and degradation, *Appl. Mater. Today*, 2022, 26, 5.
- Z. H. Li, Z. Z. Xie, H. Lu, Y. Wang and Y. S. Liu, Cargo Transportation and Methylene Blue Degradation by Using Fuel-Powered Micromotors, *ChemistryOpen*, 2021, 10, 861-866.
- 5. W. Ma, K. Wang, S. H. Pan and H. Wang, Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants, *Langmuir*, 2020, **36**, 6924-6929.
- H. J. Zhou, B. Wu, L. Dekanovsky, S. Y. Wei, B. Khezri, T. Hartman, J. H. Li and Z. Sofer, Integration of BiOI nanosheets into bubble-propelled micromotors for efficient water purification, *FlatChem*, 2021, **30**, 6.
- F. Kuralay, S. Sattayasamitsathit, W. Gao, A. Uygun, A. Katzenberg and J. Wang, Self-Propelled Carbohydrate-Sensitive Microtransporters with Built-In Boronic Acid Recognition for Isolating Sugars and Cells, *J. Am. Chem. Soc.*, 2012, 134, 15217-15220.
- Y. N. Zhang, X. Li, D. W. Li and Q. F. Wei, A laccase based biosensor on AuNPs-MoS₂ modified glassy carbon electrode for catechol detection, *Colloid Surf. B-Biointerfaces*, 2020, 186, 7.
- Y. J. Zheng, D. D. Wang, Z. K. Li, X. F. Sun, T. T. Gao and G. W. Zhou, Laccase biosensor fabricated on flower-shaped yolk-shell SiO₂ nanospheres for catechol detection, *Colloid Surf. A-Physicochem. Eng. Asp.*, 2018, **538**, 202-209.
- S. Erogul, S. Z. Bas, M. Ozmen and S. Yildiz, A new electrochemical sensor based on Fe₃O₄ functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone, *Electrochim. Acta*, 2015, **186**, 302-313.
- P. Y. Xiao, Y. Liu, W. J. Zong, J. Wang, M. H. Wu, J. J. Zhan, X. L. Yi, L. F. Liu and H. Zhou, Highly selective colorimetric determination of catechol based on the aggregation-induced oxidase-mimic activity decrease of δ-MnO₂, *RSC Adv.*, 2020,

10, 6801-6806.

 X. X. Liu, J. Yang, J. Cheng, Y. Xu, W. Chen and Y. C. Li, Facile preparation of four-in-one nanozyme catalytic platform and the application in selective detection of catechol and hydroquinone, *Sens. Actuator B-Chem.*, 2021, 337, 9.