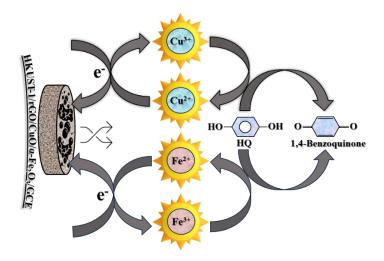

Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

## **Electronic Supplementary Information** 1 MOFs derived metal oxides nanohybrids with in-situ grown rGO: A 2 smart material for simultaneous electrochemical sensing of HQ and 3 RS 4 Tayyaba Iftikhar<sup>a,1</sup>, Muhammad Irfan Majeed<sup>b</sup>, Ayesha Aziz<sup>c</sup>, Anees A. Khadom<sup>d</sup>, Zhuo Huang<sup>c</sup>, 5 Ghazala Ashraf<sup>c</sup>, Guangfang Li<sup>a</sup>, Muhammad Asif<sup>a,2,\*</sup>, Fei Xiao<sup>a,\*</sup>, and Hongfang Liu<sup>a,\*</sup> 6 7 <sup>a</sup>Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of 8 9 Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering 10 Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. 11 China 12 13 <sup>b</sup>University of Agriculture, Faisalabad, Punjab, Pakistan <sup>c</sup>College of Life Science and Technology, Huazhong University of Science and Technology 14 (HUST), Wuhan, 430074, P. R. China 15 <sup>d</sup>Department of Chemical Engineering, College of Engineering, University of Divala, Baquba City 16 17 32001, Divala Governorate, Iraq <sup>e</sup>Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, 289 18 Huangpu Street, Wuhan, Hubei, P. R. China 19 20 \*Corresponding authors: 21 asif83chemist@gmail.com (M. Asif); xiaofei@hust.edu.cn (F. Xiao); liuhf@hust.edu.cn (H. Liu) 22 23 **Randles-Sevcik equation** 24

<sup>1</sup>School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518055, P.R. China <sup>2</sup>School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China Fig. S1 shows how the Randles–Sevcik equation can be used to determine the electrochemically active surface area of various electrodes.<sup>1-3</sup>

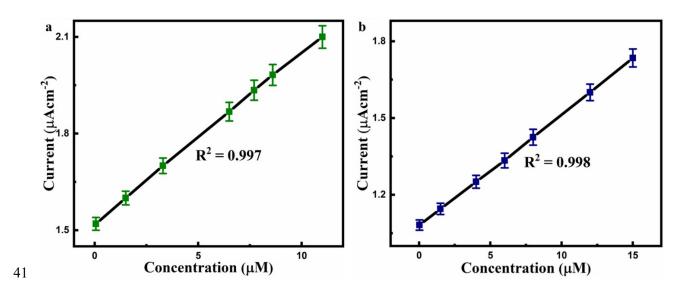
27 
$$Ip = (2.69 \times 10^5) n^{3/2} AC^* D^{1/2} v^{1/2}$$
(1)

The numbers *n*, *A*, *D*, *c*, and *v* in the preceding equation represent the number of electrons transfer, area of electrode, electroactive molecule diffusion coefficient in the solution, probe molecule concentration in the bulk solution, and scan rate, respectively. In this case,  $Fe(CN)_6^{3/4-}$ concentration =  $2.0 \times 10^{-3}$  M while  $D = 7.60 (\pm 0.02) 10^{-6}$  cm<sup>2</sup> s<sup>-1</sup>. HKUST-1/rGO/CuO/ $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (0.237 cm<sup>2</sup>) has a larger electrochemical surface area than HKUST-1/rGO/CuO (0.196 cm<sup>2</sup>), HKUST-1/CuO (0.149 cm<sup>2</sup>), HKUST-1 (0.127 cm<sup>2</sup>), and bare GCE (0.0678 cm<sup>2</sup>) respectively.



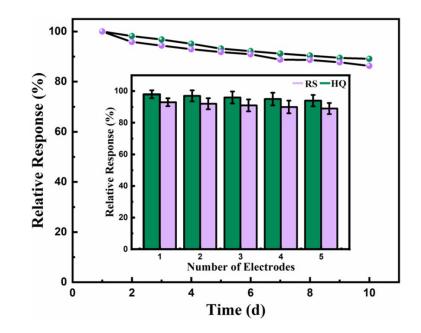

34

<sup>35</sup> Fig. S1 Cyclic voltammograms of Bare GCE, HKUST-1/GCE, HKUST-1/CuO/GCE, HKUST-


<sup>36 1/</sup>rGO/CuO/GCE, and HKUST-1/rGO/CuO/ $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>/GCE in 0.1 M KCl with 1 mM K<sub>4</sub>Fe(CN)<sub>6</sub>

<sup>37</sup> and 1 mM  $K_3Fe(CN)_6$ .






- 39 Fig. S2 Electrooxidation reaction mechanism of HQ on GCE modified HKUST-1/rGO/CuO/α-
- 40  $Fe_2O_3$ .



42 Fig. S3 (a, b) The linear calibration plots of current versus various concentration of each analyte

43 in co-existence system of HQ and RS.



## 44

45 Fig. S4 Long-term stability assessment of HKUST-1/rGO/CuO/α-Fe<sub>2</sub>O<sub>3</sub> modified GCE. Inset:

46 Reproducibility test of HKUST-1/rGO/CuO/α-Fe<sub>2</sub>O<sub>3</sub>/GCE of five different electrodes in 5 mM

47 HQ and RS (n = 3).

48 In our investigation, we performed detailed calculations to assess critical physical properties,

49 including pore size, pore volume, and surface area. These parameters, crucial in understanding

50 material characteristics, are summarized and presented in Table S1, offering a comprehensive

51 overview of our findings.

- 52 Table S1 Assessment of physical properties, encompassing BET Surface Area and Pore
- 53 Parameters, through BET analysis

| Sample                                               | Pore Size<br>(nm)  | Pore Volume<br>(cm <sup>3</sup> /g) | BET surface area<br>(m²/g) |
|------------------------------------------------------|--------------------|-------------------------------------|----------------------------|
| HKUST-1                                              | <mark>2.194</mark> | <mark>0.014</mark>                  | 31.203                     |
| HKUST-1/CuO                                          | <mark>2.983</mark> | <mark>0.036</mark>                  | <mark>39.436</mark>        |
| HKUST-1/rGO/CuO                                      | <mark>4.875</mark> | <mark>0.183</mark>                  | <mark>51.785</mark>        |
| HKUST-1/rGO/CuO/α-<br>Fe <sub>2</sub> O <sub>3</sub> | <mark>5.398</mark> | 0.231                               | <mark>60.018</mark>        |

## 55 **References**

- G. Ashraf, M. Asif, A. Aziz, T. Iftikhar and H. Liu, Rice-spikelet-like copper oxide decorated with
   platinum stranded in the CNT network for electrochemical in vitro detection of serotonin, ACS
   Appl. Mater. Interfaces, 2021, 13, 6023-6033.
- M. Asif, A. Aziz, G. Ashraf, Z. Wang, J. Wang, M. Azeem, X. Chen, F. Xiao and H. Liu, Facetinspired core-shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing
  performance toward sulfide in biotic fluids, ACS Appl. Mater. Interfaces, 2018, 10, 36675-36685.
- M. Asif, A. Aziz, H. Wang, Z. Wang, W. Wang, M. Ajmal, F. Xiao, X. Chen and H. Liu,
  Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced
  graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and
  ascorbic acid, Microchim. Acta, 2019, 2, 1-11.

66