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Equations: 

Batch adsorption experiments 

          Eq. 1
𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑅𝐸)(%) =  

𝐶0 ‒ 𝐶𝑒

𝐶0
∗ 100

         Eq. 2
𝐴𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑞𝑒) =  

𝐶0 ‒ 𝐶𝑒

𝑚
𝑉

 Eq. 3
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐾𝑑) =  

𝐶0 ‒ 𝐶𝑒

𝐶𝑒
×

𝑉
𝑚

 

Where, C0 and Ce (mg/L) represents initial and equilibrium concentration of Pb(II) in supernatant 
respectively. m (g) is adsorbent mass, V (ml) is solution volume.

Kinetics studies
 Pseudo first-order kinetics:       Eq. 4ln (𝑞𝑒 ‒ 𝑞𝑡) = ln 𝑞𝑒 ‒ 𝑘1𝑡

 Pseudo second-order kinetics:         Eq. 5

𝑡
𝑞𝑡

=  
1

𝑘2𝑞2
𝑒

+  
𝑡

𝑞𝑒

Where, qe and qt represents the adsorption capacity at equilibrium and time t (mg/g), respectively. k1 
(min-1) and k2 (g mmol-1 min-1) represents parameters for kinetic rate constants for pseudo-first-order 
and pseudo-second-order model, respectively.

Adsorption isotherm studies 

 Langmuir adsorption isotherm:     Eq. 6

𝐶𝑒

𝑞𝑒
=  

𝐶𝑒

𝑞𝑚𝑎𝑥
+  

1
𝑘1𝑞𝑚𝑎𝑥

 Freundlich adsorption isotherm:     Eq. 7
𝑙𝑜𝑔 𝑞𝑒 = 𝑙𝑜𝑔 𝐾𝑓 +  

1
𝑛

 𝑙𝑜𝑔 𝐶𝑒

 Eq. 8
𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑅𝐿) =  

1
1 + 𝐾𝐿𝐶𝑜

Where, qmax and qe represents the maximum (theoretical) and equilibrium adsorption capacity (mg/g) 
respectively, Ce is adsorbate concentration at equilibrium (mg/L), kL (L/mg) and KF (L/mg) represents 
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the Langmuir (represents the binding strength) and Freundlich constant (represent the adsorption 
capacity) respectively and 1/n (ranging 0-1) represent the adsorption intensity. 

Adsorption thermodynamics studies

  Eq. 9
𝑙𝑛⁡(𝐾) =  ‒ (∆𝐻0

𝑅 )1
𝑇

 +  
∆𝑆0

𝑅

 Eq. 10∆𝐺0 =  ∆𝐻0 ‒ 𝑇∆𝑆0

Where, K (qe/Ce) represents the equilibrium constant (L/g), T representants temperature (K) and R 
(8.314 J mol-1 K-1) represents gas constant.

Fig. S1. Thermogravimetric analysis (TGA) of Cu-Im showing three distinctive regions of behaviour 
suggesting high thermal stability up to 240OC. 
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Fig. S2. Elaboration of the BET surface area using the Rouquerol criteria as implemented using the 
BETSI algorithm. BETSI predicts the BET surface area to be 18 m2g-1. For a detailed understanding of 
the implementation of this analysis, readers are directed to Fairen-Jimenez et al.1 
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Fig S3. a. pseudo-first-order kinetics reaction linear fitted data, b. pseudo-second-order kinetics 
reaction linear fitted data, c. Langmuir adsorption isotherm, d. Freundlich adsorption isotherm, e. 
adsorption thermodynamics (Van’t Hoff plot).
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Fig. S4. Copper release profile. % Cu release profile for removal of heavy metal ions with varied initial 
metal concentration in ultrapure water. (MOF concentration: 1000 mg L-1).

Fig. S5. Removal efficiency of Cu-Im MOF for metal ions adsorption over 5 cycles. (MOF concentration: 
1000 mg L-1, Initial metal ion concentration: 1 – 500 mg L-1 for Cd(II) and 1-1000 mg L-1 for Pb(II), at pH 
5 and temperature: 25 oC). 
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Fig. S6. Post-adsorption study using EDS elemental mapping, a. Pb adsorbed Cu-Im, b. Mn adsorbed 
Cu-Im, c. Cd adsorbed Cu-Im and d. Ni adsorbed Cu-Im.

   

Fig. S7. XPS survey spectrum of a. pristine Cu-Im MOF, b. Pb adsorbed Cu-Im, c. Mn adsorbed Cu-
Im, d. Cd adsorbed Cu-Im and e. Ni adsorbed Cu-Im. 
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Fig. S8. XPS high resolution spectra of a. Pb 4f (in Pb adsorbed Cu-Im), b. Mn 2p (in Mn adsorbed 
Cu-Im), c. Cd 3d (in Cd adsorbed Cu-Im), d. Ni 2p (in Ni adsorbed Cu-Im).
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Fig. S9. XPS high resolution Cu 2p spectra of a. pristine Cu-Im MOF, b. Pb adsorbed Cu-Im, c. Mn 
adsorbed Cu-Im, d. Cd adsorbed Cu-Im and e. Ni adsorbed Cu-Im.
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Fig. S10. XPS high resolution O1s spectra of a. pristine Cu-Im MOF, b. Pb adsorbed Cu-Im, c. Mn 
adsorbed Cu-Im, d. Cd adsorbed Cu-Im and e. Ni adsorbed Cu-Im.

Fig. S11. Cu leaching from Cu-Im framework as a function of time at concentrations of 100 μg mL-1 
and 200 μg mL-1. 
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Fig. S12 Images of MOF-magnetic nanoparticle hybrids which could be used to effectively 
separate the MOF particles from water

Table S1. List of various MOF-based and other adsorbents used for Pb(II), Cd(II) capture from water, 
as depicted in Figure 6c in the manuscript.

Material Name Pb (II)
Adsorption 
Capacity 
(mg g-1)

Cd (II)
Adsorption 
Capacity 
(mg g-1)

Mn(II)
Adsorption 
Capacity 
(mg g-1)

Ni(II)
Adsorption 
Capacity 
(mg g-1)

Ref

1. Cu-Im 490 327 233 72 This work
2. dithizone-modified 

Fe3O4 nanoparticles and 
copper-(benzene-1,3,5-
tricarboxylate) MOF 
nanocomposite

108 188 98 Ref4

3. TMU-5 281 43 Ref5
4. MOF-199 containing 

magnetite (Fe3O4) 
nanoparticles carrying 
covalently immobilized 4-
(thiazolylazo) resorcinol 
(Fe3O4@TAR)

185 210 196 Ref6

5. MOF-808-EDTA 313 Ref7
6. MIL-101(Fe) 198 155 Ref8
7. UiO-66-EDA 243 217 Ref9
8. MOF-based melamine foams 422 222 Ref10

9. UiO-66-SO3H 176 194 Ref11

10. Zr-MOF (free carboxylic 
group)

100 37 Ref12

11. HS-mSi@MOF-5 312 98 Ref13

12. Fe3O4-ZrMOF@GSH 409 403 Ref14

13. UiO-66-NHC(S)NHMe 232 49 Ref15

14. Fe3O4@UiO-66–NH2 833 714 Ref16

16. UiO-66 with melamine 175 146 Ref17

17. DNPH modified -Al2O3 100 83 6 18 Ref18

18. Hydrated ferric oxide 211 147 Ref19

19. Calcium titanate 124 8 Ref20

20. Plasma modified biochar 123 61 Ref21

21. MCs@Mg/Fe-LDHs 759 Ref22

22. Chitosan/GO nanofibers 461 Ref23

23. Oxidized MWCNTs 75 66 59 Ref24

24. Na-Y/ZnO/NH2/SH 
composite

295 177 Ref25

25. ultrafine mesoporous 85 79 66 Ref26
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magnetite (Fe3O4) 
nanoparticles (UFMNPs)

26. EDTA-GO 508 Ref27

27. Zeolite NaY 454 Ref28

28. Magnetic 
Nanoparticle/Nanocomposite 
Beads

23 12 Ref29

29 poly (sodium acrylate)-
graphene oxide (PSA-GO)

238 238 Ref30

30 ZIF-8/PAN Nanofibers 127 Ref31

31 Unmodified Nigerian 
kaolinite clay (UAK)

111 166 Ref32

32 NaCl-activated 
clinoptilolite+mordenite

21 Ref33

Dataset S1 (attached as a CSV file contains the list of MOFs used for the benchmark studies). 
Under the common name, the attached number corresponds to the reference in Burtch et al.2 from where 
the metal centre and linker are extracted. The linker is represented using the SMILES format3, making 
it easily featurizable for t-SNE visualisation. 
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