Supporting Information for

Hydrolytically stable nanosheets of Cu-Imidazolate MOF for selective trapping and simultaneous removal of multiple heavy metal ions.

Prathmesh Bhadane^a, Priya Mahato^a, Dhruv Menon^b, Biraj Kanta Satpathy^a, Lisi Wu^c, Swaroop Chakraborty^c, Prateek Goyal^a, Iseult Lynch^c, Superb K. Misra^{a,*}

^aMaterials Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India.

^bDepartment of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom.

^cSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B152TT, United Kingdom.

*Email: smisra@iitgn.ac.in

Equations:

Batch adsorption experiments

• Removal Efficiency (RE)(%) =
$$\frac{C_0 - C_e}{C_0} * 100$$
 Eq. 1

Adsorption capacity $(q_e) = \frac{c_0 - c_e}{c_0 - c_e} V$

• Distribution Coefficient
$$(K_d) = \frac{C_0 - C_e}{C_e} \times \frac{V}{m}$$
 Eq. 3

Where, C_0 and C_e (mg/L) represents initial and equilibrium concentration of Pb(II) in supernatant respectively. m (g) is adsorbent mass, V (ml) is solution volume.

Kinetics studies

- Pseudo first-order kinetics: $\ln (q_e q_t) = \ln q_e k_1 t$ Eq. 4
- Pseudo second-order kinetics: $\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$ Eq. 5

Where, q_e and q_t represents the adsorption capacity at equilibrium and time t (mg/g), respectively. k_1 (min⁻¹) and k_2 (g mmol⁻¹ min⁻¹) represents parameters for kinetic rate constants for pseudo-first-order and pseudo-second-order model, respectively.

Adsorption isotherm studies

• Langmuir adsorption isotherm:
$$\frac{C_e}{q_e} = \frac{C_e}{q_{max}} + \frac{1}{k_1 q_{max}}$$
 Eq. 6

• Freundlich adsorption isotherm:
Separation factor
$$(R_L) = \frac{1}{1 + K_L C_o}$$
Eq. 7
Eq. 8

Where, q_{max} and q_e represents the maximum (theoretical) and equilibrium adsorption capacity (mg/g) respectively, C_e is adsorbate concentration at equilibrium (mg/L), k_L (L/mg) and K_F (L/mg) represents

2

the Langmuir (represents the binding strength) and Freundlich constant (represent the adsorption capacity) respectively and 1/n (ranging 0-1) represent the adsorption intensity.

Adsorption thermodynamics studies

	$ln[m](K) = -\left(\frac{\Delta H^0}{R}\right)\frac{1}{R} + \frac{\Delta S^0}{R}$	
•	(R)T R	Eq. 9
•	$\Delta G^0 = \Delta H^0 - T \Delta S^0$	Eq. 10

Where, K (q_e/C_e) represents the equilibrium constant (L/g), T representants temperature (K) and R (8.314 J mol⁻¹ K⁻¹) represents gas constant.

Fig. S1. Thermogravimetric analysis (TGA) of Cu-Im showing three distinctive regions of behaviour suggesting high thermal stability up to 240°C.

BETSI Analysis for Culm_BET

Fig. S2. Elaboration of the BET surface area using the Rouquerol criteria as implemented using the BETSI algorithm. BETSI predicts the BET surface area to be 18 m²g⁻¹. For a detailed understanding of the implementation of this analysis, readers are directed to Fairen-Jimenez et al.¹

Fig S3. a. pseudo-first-order kinetics reaction linear fitted data, b. pseudo-second-order kinetics reaction linear fitted data, c. Langmuir adsorption isotherm, d. Freundlich adsorption isotherm, e. adsorption thermodynamics (Van't Hoff plot).

Fig. S4. Copper release profile. % Cu release profile for removal of heavy metal ions with varied initial metal concentration in ultrapure water. (MOF concentration: 1000 mg L⁻¹).

Fig. S5. Removal efficiency of Cu-Im MOF for metal ions adsorption over 5 cycles. (MOF concentration: 1000 mg L⁻¹, Initial metal ion concentration: 1 - 500 mg L⁻¹ for Cd(II) and 1-1000 mg L⁻¹ for Pb(II), at pH 5 and temperature: 25 °C).

Fig. S6. Post-adsorption study using EDS elemental mapping, a. Pb adsorbed Cu-Im, b. Mn adsorbed Cu-Im, c. Cd adsorbed Cu-Im and d. Ni adsorbed Cu-Im.

Fig. S7. XPS survey spectrum of a. pristine Cu-Im MOF, b. Pb adsorbed Cu-Im, c. Mn adsorbed Cu-Im, d. Cd adsorbed Cu-Im and e. Ni adsorbed Cu-Im.

Fig. S8. XPS high resolution spectra of a. Pb 4f (in Pb adsorbed Cu-Im), b. Mn 2p (in Mn adsorbed Cu-Im), c. Cd 3d (in Cd adsorbed Cu-Im), d. Ni 2p (in Ni adsorbed Cu-Im).

Fig. S9. XPS high resolution Cu 2p spectra of a. pristine Cu-Im MOF, b. Pb adsorbed Cu-Im, c. Mn adsorbed Cu-Im, d. Cd adsorbed Cu-Im and e. Ni adsorbed Cu-Im.

Fig. S10. XPS high resolution O1s spectra of a. pristine Cu-Im MOF, b. Pb adsorbed Cu-Im, c. Mn adsorbed Cu-Im, d. Cd adsorbed Cu-Im and e. Ni adsorbed Cu-Im.

Fig. S11. Cu leaching from Cu-Im framework as a function of time at concentrations of 100 μ g mL⁻¹ and 200 μ g mL⁻¹.

Fig. S12 Images of MOF-magnetic nanoparticle hybrids which could be used to effectively separate the MOF particles from water

Table S1. List of various MOF-based and other adsorbents used for Pb(II), Cd(II) capture from water, as depicted in Figure 6c in the manuscript.

Adsorption Capacity (mg g-1)Adsorption Capacity (mg g-1)Adsorption Capacity (mg g-1)Adsorption Capacity (mg g-1)1.Cu-Im49032723372Th2.dithizone-modified Fe ₂ O ₄ nanoparticles10818898Re	This work Ref ⁴ Ref ⁵
Capacity (mg g-1)Capacity (mg g-1)Capacity (mg g-1)Capacity (mg g-1)Capacity (mg g-1)1.Cu-Im49032723372Th2.dithizone-modified10818898Re	This work Ref ⁴ Ref ⁵
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	This work Ref⁴
1.Cu-Im49032723372Th2.dithizone-modified10818898Re	This work Ref ⁴
2. dithizone-modified 108 188 98 Re	Ref ^₄
Fe ₂ O ₄ papoparticles and	Ref⁵
	Ref⁵
copper-(benzene-1,3,5-	Ref ⁵
tricarboxylate) MOF	Ref ⁵
nanocomposite	Ref ⁵
3. TMU-5 281 43 Re	
4. MOF-199 containing 185 210 196 Re	Ref ⁶
magnetite (Fe ₃ O ₄)	
nanoparticles carrying	
covalently immobilized 4-	
(thiazolylazo) resorcinol	
5. MOF-808-EDTA 313 R6	
6. MIL-101(Fe) 198 155 Re	Ref
7. UIU-00-EDA 243 217 R(0 MOE based metamine former 400 200 D	
9. UIU-00-SU ₃ H 176 194 R(
10. ZI-MOF (Iree carboxylic 100 37	Rel'2
	Pof ¹³
12 Eo304 7:MOE@CSH 400 403	Ref ¹⁴
12. Fe304-ZIMOF@0311 409 403 Rd 13. LIO 66 NHC/S/NHMo 232 40 Pd	Dof ¹⁵
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rof ¹⁶
14. Fe304@010-00-INT2 033 714	Rof ¹⁷
17. DNPH modified -Al-Oa 100 83 6 18 R	Rof ¹⁸
18 Hydrated ferric oxide 211 147	Rof ¹⁹
19 Calcium titanate 124 8	Ref ²⁰
20 Plasma modified biochar 123 61 R	Ref ²¹
21 MCs@Ma/Fe-LDHs 759	Ref ²²
22 Chitosan/GO nanofibers 461	Ref ²³
23. Oxidized MWCNTs 75 66 59 Rd	Ref ²⁴
24. Na-Y/ZnO/NH ₂ /SH 295 177 R	Ref ²⁵
composite	
25. ultrafine mesoporous 85 79 66 Re	Ref ²⁶

	magnetite (Fe ₃ O ₄) nanoparticles (UFMNPs)					
26.	EDTA-GO	508				Ref ²⁷
27.	Zeolite NaY	454				Ref ²⁸
28.	Magnetic	23	12			Ref ²⁹
	Nanoparticle/Nanocomposite					
	Beads					
29	poly (sodium acrylate)-		238	238		Ref ³⁰
	graphene oxide (PSA-GO)					
30	ZIF-8/PAN Nanofibers		127			Ref ³¹
31	Unmodified Nigerian			111	166	Ref ³²
	kaolinite clay (ŪAK)					
32	NaCI-activated			21		Ref ³³
	clinoptilolite+mordenite					

Dataset S1 (attached as a CSV file contains the list of MOFs used for the benchmark studies). Under the common name, the attached number corresponds to the reference in Burtch et al.² from where the metal centre and linker are extracted. The linker is represented using the SMILES format³, making it easily featurizable for t-SNE visualisation.

References.

1. J. W. Osterrieth, et al., **2022** How reproducible are surface areas calculated from the BET equation?. *Advanced Materials*, *34*(27) 2201502.

2. N.C Burtch, H. Jasuja, K. S. Walton, **2014** Water stability and adsorption in metal–organic frameworks. *Chemical Reviews*, *114*(20), 10575.

3. D. Weininger, SMILES, a chemical language and information system. 1. **1988** Introduction to methodology and encoding rules. *Journal of Chemical Information and Computer Sciences*, 28(1), 31.

4. Taghizadeh, M., et al **2013**. A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology. *Microchimica Acta*, *180*, 1073.

5. Tahmasebi, E., et al **2015**. Application of mechanosynthesized azine-decorated zinc (II) metal– organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study. *Inorganic chemistry*, *54*(2), pp.425-433.

6. Ghorbani-Kalhor, E., **2016**. A metal-organic framework nanocomposite made from functionalized magnetite nanoparticles and HKUST-1 (MOF-199) for preconcentration of Cd (II), Pb (II), and Ni (II). *Microchimica Acta*, *183*, 2639.

7. Peng, Y., et al **2018**. A versatile MOF-based trap for heavy metal ion capture and dispersion. *Nature communications*, 9(1), 187.

8. Babazadeh, M., et al **2015**. Solid phase extraction of heavy metal ions from agricultural samples with the aid of a novel functionalized magnetic metal–organic framework. *RSC Adv.*, *5*(26), 19884.

9. Ahmadijokani, F., et al **2021**. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. *Chemosphere*, *264*, 128466.

10. Hu, Q., et al. 2021. Ultrastable MOF-based foams for versatile applications. Nano Res., pp.1-10.

11. Gul, S., et al. **2022**. Effective adsorption of cadmium and lead using SO3H-functionalized Zr-MOFs in aqueous medium. *Chemosphere*, *307*, p.135633.

12. Nimbalkar, M.N. and Bhat, B.R., **2021**. Simultaneous adsorption of methylene blue and heavy metals from water using Zr-MOF having free carboxylic group. *Journal of Environmental Chemical Engineering*, *9*(5), 106216.

13. Zhang, J., et al. **2016**. Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution. *Journal of Molecular Liquids*, 221, 43.

14. Ragheb, E., et al. **2022**. Modified magnetic-metal organic framework as a green and efficient adsorbent for removal of heavy metals. *J. Env. Chem. Eng.*, *10*(2), 107297.

15. Saleem, H., et al. **2016**. Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution. *Microporous and Mesoporous Materials*, *221*, 238. **16.** Abdel-Magied, A.F., et al. **2022**. Magnetic metal-organic frameworks for efficient removal of

cadmium (II), and lead (II) from aqueous solution. *J. Env. Chem. Eng.*, *10*(3), 107467.

17. Abdelmoaty, A.S., et al. **2022**. High performance of UiO-66 metal–organic framework modified with melamine for uptaking of lead and cadmium from aqueous solutions. *Journal of Inorganic and Organometallic Polymers and Materials*, *32*(7), 2557.

18. Afkhami, A., et al. **2010**. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. *J. Haz. Mat.*, *181*(1-3), 836.

19. Manju, G.N., et al. **2002**. An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron (III) oxide. *Journal of Hazardous materials*, *91*(1-3), 221.

20. Zhang, D., **2011**. Preparation and characterization of nanometer calcium titanate immobilized on aluminum oxide and its adsorption capacity for heavy metal ions in water. *Advanced Materials Research*, *152*, 670.

21. Liu, C. and Zhang, H.X., **2022**. Modified-biochar adsorbents (MBAs) for heavy-metal ions adsorption: A critical review. *Journal of Environmental Chemical Engineering*, *10*(2), 107393.

22. Xie, Y., et al. **2019**. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb (II) and Cu (II). *Journal of colloid and interface science*, *536*, 440.

23. Najafabadi, H.H., et al. **2015**. Removal of Cu 2+, Pb 2+ and Cr 6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. *Rsc Advances*, *5*(21), 16532.

24. Lasheen, M.R., et al. **2015**. Removal of heavy metals from aqueous solution by multiwalled carbon nanotubes: equilibrium, isotherms, and kinetics. *Desalination and Water Treatment*, *53*(13), 3521.

25. Shoja, F. and Amani, M.A., **2020**. Multi-modification of Na-Y zeolite with ZnO nanoparticles, amine, and mercapto functional groups for single and simultaneous heavy metal adsorption from water system. *Research on Chemical Intermediates*, *46*, 3569.

26. Fato, T.P., et al. **2019**. Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles. *ACS omega*, *4*(4),7543.

27. Cui, L., et al. **2015**. EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property. *Chem. Eng. J.*, 281,1.

28. Shariatinia, Z. and Bagherpour, A., **2018**. Synthesis of zeolite NaY and its nanocomposites with chitosan as adsorbents for lead (II) removal from aqueous solution. *Powder Technology*, *338*, 744.

29. ŞAHİN, M., et al. **2023**. Removal of Ni (II), Cu (II), Pb (II), and Cd (II) from Aqueous Phases by Silver Nanoparticles and Magnetic Nanoparticles/Nanocomposites. *ACS omega*, *8*(38), 34834.

30. Xu, R., et al. **2015**. New double network hydrogel adsorbent: Highly efficient removal of Cd (II) and Mn (II) ions in aqueous solution. *Chemical Engineering Journal*, *275*, 179.

31. Peng, L., et al. **2020**. Heavy metal elimination based on metal organic framework highly loaded on flexible nanofibers. *Environmental Research*, *188*, 109742.

32. Dawodu, F.A. and Akpomie, K.G., **2014**. Simultaneous adsorption of Ni (II) and Mn (II) ions from aqueous solution unto a Nigerian kaolinite clay. *J. Materials research and technology*, *3*(2), pp.129-141.

33. Taffarel, S.R. and Rubio, J., **2009**. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. *Minerals Engineering*, *22*(4), 336.