# Supporting information

### Enhanced surface Lewis acidity of ZrO<sub>2</sub> by -HSO<sub>4</sub> for efficient

### CF<sub>4</sub> decomposition

Yingkang Chen<sup>a†</sup>, Cheng-Wei Kao<sup>b†</sup>, Tao Luo<sup>a</sup>, Hang Zhang<sup>a</sup>, Yan Long<sup>a</sup>, Junwei Fu<sup>a</sup>, Zhang Lin<sup>c</sup>, Liyuan Chai<sup>c</sup>, Ting-Shan Chan<sup>b\*</sup>, Min Liu<sup>a,c\*</sup>

<sup>a</sup>Hunan Joint International Research Center for Carbon Dioxide Resource Utilization,
School of Physics, and School of Metallurgy and Environment, Central South University,
Changsha 410083, Hunan, P. R. China
<sup>b</sup>National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
<sup>c</sup>School of Metallurgy and Environment, Central South University, Changsha 410083,
Hunan, P. R. China
<sup>†</sup> These authors contributed equally.
\*Corresponding author
E-mail address:
<u>chan.ts@nsrrc.org.tw (Ting-Shan Chan)</u>
minliu@csu.edu.en (Min Liu)

#### 1. Characterization of catalysts

X-ray diffraction (XRD) patterns were obtained by using a STADIP automated transmission diffractometer, operated at 36 kV and 20 mA by using CuKa1 radiation. The XRD patterns were scanned in the 2 Theta range of 15-90°.

The transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) images were obtained by JEOL 3010 operated at 200 kV. The finely ground sample was dispersed in ethanol and then dropped onto a copper grid for TEM and EDX testing.

The Brunauer-Emmett-Teller (BET) surface area and pore size distribution of the catalysts were determined by  $N_2$  adsorption-desorption analysis using AUTOSORB IQ. Prior to measurements, the samples were degassed at 300 °C for 6 h, at a rate of 10 °C/min.

ICP-OES tests of all samples were performed by an Agilent 5110 spectrometer. Prior to testing, the samples were completely dissolved by sonication in a 5% concentration of HF solution. Then, the F ions in the test liquid were evaporated at room temperature.

NH<sub>3</sub> (or CF<sub>4</sub>)-temperature programmed desorption (TPD) was performed by using a PCA-1200 on a chemisorption analyzer equipped with a thermal conductivity detector (TCD). The chemisorption analyzer was PCA-1200 from Beijing Builder electronic technology Co., Ltd. For each experiment, the weighed sample (100 mg) was pretreated at 600 °C (10 °C/min) for 2 h under Ar (30 mL/min) and cooled to room temperature. Then the NH<sub>3</sub> (or CF<sub>4</sub>) gas (30 mL/min) was introduced instead of Ar at this temperature for 1 h to ensure the saturation adsorption of NH<sub>3</sub> (or CF<sub>4</sub>). The sample was then purged with Ar for 1 h (30 mL/min) until the signal returned to the baseline as monitored by a TCD. The desorption curve of NH<sub>3</sub> (or CF<sub>4</sub>) was acquired by heating the sample from room temperature to 800°C (10 °C/min) under Ar with the flow rate of 30 mL min<sup>-1</sup>.

Pyridine-infrared (py-IR) spectra of samples were analyzed by a Thermo IS-50 Fourier Transform infrared (FTIR) spectrometer. The sample was heated at 600 °C for 5 h, and cooled to room temperature. Then, vacuumized to 10<sup>-3</sup> Torr, samples were exposed to pyridine vapour (3000 Pa) at 100 °C for 1 h, followed by reevacuation for 1 h, and lower the temperature to take out our samples. After this step, the sample was analyzed by FTIR.

In situ IR spectra of sample was also analyzed by a Thermo IS-50 FTIR spectrometer. Self-supported wafer was prepared from catalyst powder (ca. 10 mg). The wafer was loaded into an *in situ* IR thermal catalytic cell with CaF<sub>2</sub> windows and pretreated under Ar flow at 650 °C for 2 h. Then regulated to the target temperature to obtain a background spectrum which should be deducted from the sample spectra. As for the transient reactions with CF<sub>4</sub> and H<sub>2</sub>O, after the background spectra at appointed temperatures under Ar flow was obtained, the catalyst was exposed to 1 mL min<sup>-1</sup> 20% CF<sub>4</sub>/Ar + H<sub>2</sub>O (50 mL Ar passing through water bottle) at 580 °C and meanwhile the reaction process was recorded as a function of time.

#### 2. Computation detail

All our investigations in this study are based on density functional theory, as implemented in the Vienna ab initio simulation package (VASP)[1,2]. The exchangecorrelation potential is treated with the Perdew-Burke- Ernzerhof (PBE) formula by using the projected augmented wave (PAW) method within the generalized gradient approximation (GGA)[3]. The cut-off energy for all calculations was set to be 450 eV. All the positions of atoms are fully relaxed until the Hellmann-Feynman forces on each atom are less than 0.01 eV/Å. Meanwhile, a k-points  $\Gamma$ -centered mesh is generated for Brillouin zone samples. The DFT-D3 method proposed by Grimme was adopted to describe the van der Waals interactions, which has been shown to accurately describe chemisorption and physisorption properties on layered material. In addition, A vacuum region of about 15Å was used to decouple the periodic replicas.

 Kresse, Georg, and Jürgen Hafner. "Ab initio molecular dynamics for liquid metals." Physical Review B 47.1 (1993): 558.

- [2]. Kresse, Georg, and Jürgen Furthmüller. "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set." Physical review B 54.16 (1996): 11169.
- [3]. Perdew, John P., Kieron Burke, and Matthias Ernzerhof. "Generalized gradient approximation made simple." Physical review letters 77.18 (1996): 3865

## 3. Results



Figure S1. The CF4 decomposition test of  $\gamma\text{-Al}_2\text{O}_3$  under 650 °C.



Figure S2. The stability test of the best catalyst S2-ZrO2 under 650  $^\circ$ C.



Figure S3. The stability test of  $S_1$ -ZrO<sub>2</sub>,  $S_3$ -ZrO<sub>2</sub> and  $S_4$ -ZrO<sub>2</sub> catalysts under 650 °C.



Figure S4. The XRD pattern of the obtained Na<sub>3</sub>AlF<sub>6</sub> by recycling HF.

The F ion contents in the solution were quantified by employing the F ion selective electrode method. After decomposition of  $CF_4$  with the  $S_2$ -ZrO<sub>2</sub> catalyst at 650 °C for 10 h, the amount of F ion in solution was about 350 mg L<sup>-1</sup>. As shown in Fig. S4, the XRD pattern showed that the F ions were successfully resourced as electrolytic aluminum industry raw materials of Na<sub>3</sub>AlF<sub>6</sub> with a rate of 99.6%. The residual F ions in the solution decreased to ~1.4 mg L<sup>-1</sup>, which is below to the World Health Organization's guideline for drinking water (1.5 mg L<sup>-1</sup>).



Figure S5. The XRD pattern of  $ZrO_2$ .



Figure S6. TEM images of (a)  $ZrO_2$ , (b) S1- $ZrO_2$ , (c) S<sub>3</sub>- $ZrO_2$  and (d) S<sub>4</sub>- $ZrO_2$ .



Figure S7. The XRD pattern of  $S_2$ -Zr $O_2$  and  $S_2$ -Zr $O_2$ -after.



Figure S8. TEM image of S<sub>2</sub>-ZrO<sub>2</sub>-after.



Figure S9. The Zr K-edge XANES spectra of  $ZrO_2$ ,  $S_2$ - $ZrO_2$  and  $S_2$ - $ZrO_2$ -after.



Figure S10. XPS spectra of (a) O 1s, (b) S 2p and (c) Zr 3d for  $S_1$ -ZrO<sub>2</sub>,  $S_3$ -ZrO<sub>2</sub>and  $S_4$ -ZrO<sub>2</sub> catalysts.



Figure S11. The calculation model of  $ZrO_2$ .



Figure S12. The calculation model of  $ZrO_2$  with  $CF_4$ .



Figure S13. The calculation model of S-ZrO $_2$  with CF $_4$ .

| Sample                           | SA $(m^2/g)$ | $PV (cm^3/g)$ | APR   | S content (wt.%) |
|----------------------------------|--------------|---------------|-------|------------------|
| ZrO <sub>2</sub>                 | 18.60        | 0.13          | 24.1  | -                |
| S <sub>1</sub> -ZrO <sub>2</sub> | 67.08        | 0.1           | 5.93  | 1.074            |
| S <sub>2</sub> -ZrO <sub>2</sub> | 67.13        | 0.15          | 8.99  | 1.226            |
| S <sub>3</sub> -ZrO <sub>2</sub> | 60.26        | 0.17          | 11.61 | 3.691            |
| S <sub>4</sub> -ZrO <sub>2</sub> | 64.11        | 0.2           | 12.72 | 4.486            |
|                                  |              |               |       |                  |

Table S1. Physical properties and S content of  $ZrO_2$  and  $S_n\mathchar`-ZrO_2$  samples.

| Sample                                  | SA $(m^2/g)$ | PV (cm <sup>3</sup> /g) | APR   | S content (wt.%) |
|-----------------------------------------|--------------|-------------------------|-------|------------------|
| S <sub>2</sub> -ZrO <sub>2</sub> -after | 20.30        | 0.06                    | 11.94 | 0.317            |

Table S2. Physical properties and S content of  $S_2$ -ZrO<sub>2</sub>-after.

| Sample                                  | R <sub>Zr-O</sub> | N <sub>Zr-O</sub> | R <sub>Zr-Zr</sub> | N <sub>Zr-Zr</sub> | R <sub>Zr-S</sub> | N <sub>Zr-S</sub> |
|-----------------------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|
| S <sub>2</sub> -ZrO <sub>2</sub>        | 2.15              | 4.48              | 3.43               | 6.63               | 3.51              | 1.33              |
| S <sub>2</sub> -ZrO <sub>2</sub> -after | 2.16              | 7.44              | 3.48               | 3.6                | -                 | -                 |

Table S3. Fitting Results of Zr K-edge EXAFS Data.

|                                  | Atomic concentration / % |       |                   |         |
|----------------------------------|--------------------------|-------|-------------------|---------|
| Sample                           | Zr 2d                    | O 1s  | S 2p              |         |
|                                  |                          |       | -HSO <sub>4</sub> | $-SO_4$ |
| S <sub>1</sub> -ZrO <sub>2</sub> | 24.84                    | 54.85 | 0.64              | 2.72    |
| S <sub>3</sub> -ZrO <sub>2</sub> | 24.62                    | 56.11 | 0.64              | 2.90    |
| S <sub>4</sub> -ZrO <sub>2</sub> | 23.74                    | 54.62 | 0.74              | 3.16    |

Table S4. The surface elements content with different states from XPS determination.