## Electronic Supplementary Material (ESI) for Environmental Science: Nano

## Rapid synthesis of MXenes and their potential risk to bacterial communities in



## the tomato rhizosphere

Fig. S1 SEM image of the pristine  $Ti_3AlC_2$  MAX phase.



Fig. S2 Size distribution of E-Ti<sub>3</sub>C<sub>2</sub> nanosheets fabricated by the ECO-ME process.



Fig. S3 The XPS survey spectra of the Ti<sub>3</sub>AlC<sub>2</sub> MAX precursor and the produced E-Ti<sub>3</sub>C<sub>2</sub> nanosheets.



Fig. S4 High-resolution XPS spectra of Ti<sub>3</sub>AlC<sub>2</sub> MAX precursor and E-Ti<sub>3</sub>C<sub>2</sub> in the aluminium region.



Fig. S5 High-resolution XPS spectra of E-Ti<sub>3</sub>C<sub>2</sub> in the carbon region.



Fig. S6 High-resolution XPS spectra of E-Ti<sub>3</sub>C<sub>2</sub> in the fluorine region.



Fig. S7 Fourier transform infrared spectra of the  $E-Ti_3C_2$  nanosheets.



Fig. S8 Contact angle measured by vacuum filtration of E-Ti<sub>3</sub>C<sub>2</sub> onto a nylon substrate.



Fig. S9 Good's coverage plots for each rhizosphere soil sample.



Fig. S10 Venn diagram of unique and shared OTUs of rhizosphere bacteria for each sample.



Fig. S11 Variation of Chao1 and Simpson indexes at the OTU level for the rhizosphere bacteria after application of the  $E-Ti_3C_2$  dispersion.



Fig. S12 Principal coordinate analysis (PCoA) of rhizosphere bacterial communities.



Fig. S13 Pie chart of the phylum-level composition in the control sample.



Fig. S14 Pie chart of the phylum-level composition in the MX600\_3 sample.



Fig. S15 Pie chart of the phylum-level composition in the MX600\_6 sample.



Fig. S16 Pie chart of the phylum-level composition in the MX1200\_3 sample.



Fig. S17 Pie chart of the phylum-level composition in the MX1200\_6 sample.



Fig. S18 Phylum-level distribution of the bacterial community in each sample.



Fig. S19 Pie chart of the genus-level composition in the control sample.



Fig. S20 Pie chart of the genus-level composition in the MX600\_3 sample.



Fig. S21 Pie chart of the genus-level composition in the MX600\_6 sample.



Fig. S22 Pie chart of the genus-level composition in the MX1200\_3 sample.



Fig. S23 Pie chart of the genus-level composition in the MX1200\_6 sample.



Fig. S24 Genus-level distribution of the bacterial community in each sample.

Table S1. Energy consumption of the ECO-ME method and the conventional wet-chemical etching method.

| Preparation methods         | Working hours<br>(h) | Equipment-rated<br>power (kW) | Electricity consumption<br>(kW*h) |
|-----------------------------|----------------------|-------------------------------|-----------------------------------|
| Wet-chemical etching method | 30                   | 0.8                           | 24                                |
| ECO-ME method               | 2                    | 0.55                          | 1.1                               |

Table S2. Atomic percentages of the MAX precursor and produced  $E-Ti_3C_2$  were measured by XPS.

| Sample –                         |       | 1     | Element (atomic% | 6)    |       |
|----------------------------------|-------|-------|------------------|-------|-------|
|                                  | С     | 0     | Ti               | Al    | F     |
| MAX precursor                    | 30.17 | 42.88 | 16.50            | 10.45 | -     |
| E-Ti <sub>3</sub> C <sub>2</sub> | 42.45 | 20.38 | 26.83            | -     | 10.34 |

| Sample name | Seq_num | Base_num (bp) | Mean_length (bp) | Min_length (bp) | Max_length (bp) |
|-------------|---------|---------------|------------------|-----------------|-----------------|
| Control 1#  | 40598   | 16849676      | 415.037095       | 217             | 452             |
| Control 2#  | 41920   | 17383057      | 414.672161       | 246             | 519             |
| Control 3#  | 46968   | 19492610      | 415.018949       | 292             | 492             |
| MX600_3 1#  | 43715   | 18117821      | 414.453185       | 247             | 509             |
| MX600_3 2#  | 47573   | 19705811      | 414.222584       | 244             | 452             |
| MX600_3 3#  | 44083   | 18269834      | 414.441712       | 232             | 460             |
| MX600_6 1#  | 40013   | 16613542      | 415.203609       | 246             | 487             |
| MX600_6 2#  | 44398   | 18404256      | 414.528943       | 246             | 478             |
| MX600_6 3#  | 46936   | 19485603      | 415.152612       | 203             | 479             |
| MX1200_3 1# | 57329   | 23847186      | 415.97073        | 246             | 497             |
| MX1200_3 2# | 39069   | 16176978      | 414.061737       | 210             | 470             |
| MX1200_3 3# | 33561   | 13904011      | 414.290724       | 302             | 452             |
| MX1200_6 1# | 45312   | 18762268      | 414.068415       | 235             | 452             |
| MX1200_6 2# | 50827   | 21085826      | 414.854821       | 245             | 484             |
| MX1200_6 3# | 52052   | 21568454      | 414.363598       | 240             | 504             |

Table S3. Tag number and length of the rhizosphere samples with and without E-Ti<sub>3</sub>C<sub>2</sub> application.