Biomass@MOF nanohybrid materials for competitive drug adsorption: analysis by conventional macroscopic models and statistical physical models

Bryan Fernando Rivadeneira-Mendoza^{1, 2}, Luis Santiago Quiroz-Fernández¹, Fausthon Fred da Silva³, Rafael Luque^{4,5*}, Alina M. Balu², Joan Manuel Rodríguez-Díaz ^{1,6*}

¹ Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.

² Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain.

³ Departamento de Química, Universidade Federal da Paraíba (UFPB), 58.051-900 João Pessoa, PB, Brazil.

⁴ Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador, Email: <u>rluque@ecotec.edu.ec</u>

⁵National University of Science and Technology Polytehnica Bucharest, 1-7 Gh. Polizu str., Bucharest, Romania, E-mail: <u>rafael.alvarez@upb.ro</u>

⁶ Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador. E-mail: joan.rodriguez@utm.edu.ec

C _{0ktc} C _{0npx}	$ C_{0NPX} $ $ C_{0KTC} $	C _{oktc} C _{onpx}	$ C_{0NPX} C_{0KTC} $
0.1	0	0.1	0.1
0.3	0	0.3	0.1
0.5	0	0.5	0.1
0.7	0	0.7	0.1
0.9	0	0.9	0.1
0.1	0.3	0.1	0.5
0.3	0.3	0.3	0.5
0.5	0.3	0.5	0.5
0.7	0.3	0.7	0.5
0.9	0.3	0.9	0.5
0.1	0.7	0.1	0.9
0.3	0.7	0.3	0.9
0.5	0.7	0.5	0.9
0.7	0.7	0.7	0.9
0.9	0.7	0.9	0.9

Table S1. Combinations of initial concentrations of KTC and NPX for a competing system

Fig. S1. Comparison of the adsorption capacity (Qe) of the pristine materials and the new composite separately

Fig. S2. Main parameters of the ADS: pH study (a), agitation speed study (b) and dosage study (c).

Fig. S.3. Point zero charge (PZC) of HC@MIL-53(Al) obtained by a graphical method (a) and related information to the PKa of KTC and NPX as a function of medium pH (b).

 $C_0 \text{ KTC} (\text{mg } L^{-1})$ 178.69 25.53 75.58 127.63 229.40 280.79 Parámetros 331.85 Qe, exp (mg g^{-1}) 6.623 19.074 29.875 42.429 52.046 64.406 74.928 **Pseudo primer orden (PFO)** Qe, cal (mg g^{-1}) 6.573 18.631 29.056 41.178 49.917 50.871 72.445 k_1 (min⁻¹) 3.284 3.284 0.382 1.358 25.29 39.38 0.217 \mathbb{R}^2 0.649 0.649 0.910 0.953 0.745 0.979 0.981 **MPSD** 1.564 2.717 14.25 4.260 40.261 60.372 16.685 Pseudo segundo orden (PSO) Qe, cal (mg g^{-1}) 3.081 6.620 30.292 41.17 52.306 66.903 77.131 0.028 $k_2 (mg g^{-1} min^{-1})$ 2.726 0.224 0.023 0.005 0.004 0.026 \mathbb{R}^2 0.969 0.966 0.990 0.993 0.991 0.986 0.961 **MPSD** 1.051 1.097 8.634 5.694 8.071 10.113 2.863 **Avrami Fractionary** Qe, cal (mg g^{-1}) 2.692 18.631 26.045 41.779 47.201 63.73 58.745 0.001 1.310 14.117 0.371 28.817 25.889 k (min⁻¹) 0.126 0.018 1.311 0.617 2.961 0.528 0.571 1.390 n \mathbb{R}^2 0.799 0.760 0.896 0.789 0.996 0.993 0.646 4.320 **MPSD** 13.67 11.400 1.409 23.55 5.780 57.189 Bangham 0.013 0.022 0.028 0.008 0.008 0.004 0.004 k_v (min⁻¹) α (mg g⁻¹ min⁻¹) 0.011 0.013 0.018 0.005 0.104 0.228 0.109 \mathbb{R}^2 0.897 0.983 0.895 0.761 0.845 0.701 0.637 3.617 **MPSD** 0.377 10.446 16.833 14.056 13.488 13.483 Difusión intrapartícula Región 1 K_{id} (mg g⁻¹ min⁻¹) 0.036 0.664 4.022 4.022 4.402 5.123 4.485 7.24 9.74 Cintersept 5.25 8.67 13.87 10.05 15.24 **MPSD** 1.693 12.58 34.448 34.448 30.305 40.379 32.593 Región 2 K_{id} (mg g⁻¹ min⁻¹) 0.009 0.020 0.097 0.644 0.956 0.097 0.165 10.01 14.95 31.92 25.79 37.95 10.22 16.76 Cintersept MPSD 2.375 8.288 4.378 4.374 5.901 20.389 25.264 Región 3 K_{id} (mg g⁻¹ min⁻¹) 0.001 0.03 0.015 0.015 0.023 0.042 0.066 12.92 Cintersept 16.66 20.75 29.73 40.59 21.23 14.47 **MPSD** 0.671 2.441 3.688 3.688 2.321 6.886 9.181

Table S2. Kinetic fitting parameters and well-fitting models for the adsorption of KTC on HC@MIL-53(Al)

	C ₀ NPX (mg L ⁻¹)							
Parámetros	25.22	75.67	126.12	176.58	227.03	277.48	327.93	
Qe, exp (mg g^{-1})	6.135	18.000	31.199	43.235	55.089	67.784	80.923	
Pseudo primer orden (PFO)								
Qe, cal (mg g^{-1})	6.135	17.991	30.790	43.132	54.925	65.376	78.418	
$k_1 (min^{-1})$	3.284	1.716	0.381	0.686	0.805	39.382	0.217	
R ²	0.999	0.981	0.856	0.974	0.968	0.669	0.696	
MPSD	0.001	0.086	3.240	0.417	0.386	6.541	4.991	
Pseudo segundo orden (PSC)							
Qe, cal (mg g^{-1})	6.141	18.010	31.362	43.371	55.179	67.364	80.312	
$k_2 (mg g^{-1} min^{-1})$	4.711	2.727	2.023	1.156	1.024	0.005	0.004	
\mathbb{R}^2	0.941	0.983	0.965	0.989	0.992	0.894	0.910	
MPSD	0.115	0.174	1.619	0.270	0.190	1.056	2.947	
Avrami Fractionary								
Qe, cal (mg g^{-1})	6.135	17.996	31.227	35.025	55.021	68.016	77.302	
k (min ⁻¹)	6.286	0.743	0.271	0.001	0.560	0.102	28.116	
n	5.196	0.019	0.132	0.027	0.055	0.102	42.031	
R ²	0.999	0.974	0.9807	0.752	0.993	0.962	0.659	
MPSD	0.001	0.0518	1.281	6.797	0.185	2.552	7.583	
Bangham								
$k_y (min^{-1})$	0.012	0.012	0.011	0.012	0.012	0.011	0.011	
$\alpha (\text{mg g}^{-1} \text{min}^{-1})$	0.013	0.001	0.028	0.008	0.021	0.046	0.037	
R ²	0.597	0.887	0.948	0.812	0.804	0.878	0.896	
MPSD	0.376	0.284	3.875	1.284	1.011	3.925	181.826	
Difusión intrapartícula								
Región 1								
$K_{id} (mg g^{-1} min^{-1})$	0.015	0.050	1.139	0.549	0.576	1.281	1.485	
C _{intersept}	10.57	16.04	17.61	22.99	39.14	44.36	40.21	
MPSD	0.817	0.949	11.512	4.135	3.449	6.586	6.170	
Región 2								
$K_{id} (mg g^{-1} min^{-1})$	0.001	0.001	0.017	0.008	0.012	0.159	0.166	
C _{intersept}	12.97	13.99	18.22	30.88	42.94	46.31	61.33	
MPSD	0.001	0.660	1.035	15.622	0.391	4.446	4.032	
Región 3								
K_{id} (mg g ⁻¹ min ⁻¹)	0.002	0.001	0.003	0.001	0.002	0.001	0.005	
Cintersept	11.36	15.49	24.67	31.50	43.11	47.29	63.66	
MPSD	0.001	0.001	1.836	0.312	0.183	0.059	0.700	

Table S3. Kinetic fitting parameters and well-fitting models for the adsorption of NPX on HC@MIL-53(Al)

Isoterma	Parámetros	Temperatura (K)					
		298	313	328			
	q_{max}	50.1863	55.1507	54.2470			
Longmuin	b _{KTC}	0.4198	0.4049	0.5084			
Extendide	b _{NPX}	0.0010	0.0000	0.0000			
Extendida	MPSD	27.9083	61.8969	31.1766			
	\mathbb{R}^2	0.9093	0.9412	0.9573			
	K _{FKTC}	14.4914	16.9450	19.1311			
	n _{KTC}	1.3768	2.8417	3.3008			
Froundlich	X_{KTC}	0.3796	7.6751	0.000			
Freundlich Extendida	Y _{KTC}	3.2227	2.0664	0.0022			
	Z _{KTC}	0.5888	0.5306	1.9131			
	MPSD	6.5711	3.4963	0.1992			
	\mathbb{R}^2	0.9875	0.9950	0.9987			
	q_{mKTC}	139.3417	5674.5346	1213.4858			
	b _{KTC}	0.1194	0.0031	0.0162			
	n _{KTC}	1.2571	693640.8368	3.2079			
Sips Extendida	b _{NPX}	1.0335	0.0843	0.0361			
	n _{NPX}	561968.7726	693640.8368	562123.0339			
	MPSD	5.8698	3.3928	0.2294			
	\mathbb{R}^2	0.9924	0.9950	0.9883			

Table S4. Fitting parameters of bicomponent equilibrium isotherms for KTC adsorption and effect of temperature.

Isoterma	Parámetros	Temperatura	a (K)	
		298	313	328
	q _{max}	92.4868	126.2323	72.1714
Longmuin	b _{NPX}	0.9691	16302.3670	4623653.7000
Langmuir	$b_{\rm KTC}$	0.0000	787.7512	4137.6072
Extendida	MPSD	2.4241	7.4815	2.0126
	R ²	0.9846	0.9521	0.9444
	K _{FNPX}	55.1439	64.3508	70.6575
	n _{NPX}	4.6414	6.6552	8.7649
Enoundlich	X_{NPX}	5.7040	2.7596	0.0000
Freundida	Y _{NPX}	0.0048	0.1867	0.0358
Extenuiua	Z _{NPX}	0.0100	0.0013	0.0000
	MPSD	0.1867	0.0146	0.0586
	\mathbb{R}^2	0.9876	0.9618	0.9602
	q _{mNPX}	80.4258	316921.3400	8440.6945
	b _{NPX}	2.3759	0.0001	0.0082
	n _{NPX}	0.5507	3.8521	8.7036
Sips Extendida	b _{KTC}	0.0000	0.0020	0.0084
	n _{KTC}	3.7128	571304.2300	567073.1200
	MPSD	1.3876	1.9490	0.0588
	R ²	0.9832	0.9805	0.9601

Table S5. Fitting parameters of bicomponent equilibrium isotherms for NPX adsorption and effect of temperature.

Model	Parameter	Temperature (K)					
		298	313	328			
	n	0.5724	0.3973	0.3055			
	N_m	734.1320	16755.8340	1837.6107			
SPM1	C _{1/2}	Temperature (K)298313328 0.5724 0.3973 0.3055 734.1320 16755.8340 1837.6107 523.1203 12603243 58334.7820 10.7746 11.5883 1.2975 0.9920 0.9934 0.9886 0.5730 0.6888 0.3165 362.0886 185.7735 508.8459 0.5729 0.0055 0.3148 362.0886 1085.7349 508.8459 506.9288 106.7038 6126.5980 506.9288 6174.7615 6126.5980 13.1970 1.1892 1.6613 0.9920 0.9946 0.9874 0.9995 0.9996 0.9997 382.3922 594.9329 576.5847 383.4175 596.8567 577.8935 522.6401 805.8019 786.8564 $6.08E-05$ 0.0002 0.0001					
	MPSD	10.7746	11.5883	1.2975			
	\mathbb{R}^2	0.9920	0.9934	0.9886			
	n ₁	0.5730	0.6888	0.3165			
	Nm_1	362.0886	185.7735	508.8459			
	n ₂	0.5729	0.0055	0.3148			
SDM)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	508.8459					
5F W12	C_1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6126.5980				
	C_2						
	MPSD	13.1970	1.1892	1.6613			
	\mathbb{R}^2	0.9920	0.9946	0.9874			
	n_1	0.9995	0.9996	0.9997			
	Nm_1	382.3922	594.9329	576.5847			
SDM2	C_1	383.4175	596.8567	577.8935			
51 MI3	C_2	522.6401	805.8019	786.8564			
	MPSD	6.08E-05	0.0002	0.0001			
	R ²	0.9499	0.9524	0.9242			

Table S6. Fit parameters of physical-statistical bicomponent equilibrium models for KTC adsorption.

Model	Parameter	Temperature (K)					
		298	313	328			
	n	1.8157	1.0558	0.1773			
	N_m	734.1320	101.8928	1706.6234			
SPM1	$C_{1/2}$	523.1203	1.0792	490.2575			
	MPSD	10.7746	0.3337	1.3677			
	\mathbb{R}^2	0.9920	0.9610	0.9500			
	n_1	3.2438	0.4838	5.7373			
	Nm_1	9.2546	0.0100	5.7636			
	n_2	4.4042	1.0559	5.7373			
SPM2	Nm_2	12.2645	101.8653	5.7636			
51 1/12	$\begin{array}{cccc} \mathbf{M2} & \mathbf{M2} \\ \mathbf{M2} & \mathbf{M2} \\ \mathbf{C}_{1} & \mathbf{C}_{1} \\ \mathbf{C}_{2} & \mathbf{C}_{1} \\ \mathbf{C}_{1} & \mathbf{C}_{2} \\ \mathbf{C}_{1} & \mathbf{C}_{1} \\ \mathbf{C}_{1} & \mathbf{C}_{1} \\ \mathbf{C}_{2} & \mathbf{C}_{1} \\ \mathbf{C}_{1} & \mathbf{C}_{2} \\ \mathbf{C}_{2} & \mathbf{C}_{1} \\ \mathbf{C}_{2} & \mathbf{C}_{1} \\ \mathbf{C}_{2} & \mathbf{C}_{1} \\ \mathbf{C}_{1} & \mathbf{C}_{2} \\ \mathbf{C}_{2} & \mathbf{C}_{1} \\ \mathbf{C}_{2} & \mathbf{C}_{2} \\ \mathbf{C}_{1} & \mathbf{C}_{2} \\ \mathbf{C}_{2} & \mathbf{C}_{1} \\ \mathbf{C}_{2} & \mathbf{C}_{2} \\ \mathbf{C}_{1} & \mathbf{C}_{2} \\ \mathbf{C}_{2} & \mathbf{C}_{1} \\ \mathbf{C}_{2} & \mathbf{C}_{2} \\ \mathbf{C}_{1} & \mathbf{C}_{2} \\ \mathbf{C}_{2} & \mathbf{C}_{2} \\ \mathbf{C}_{3} & \mathbf{C}_{3} \\ \mathbf{C}_{4} & \mathbf{C}_{4} \\ \mathbf{C}_{4} & \mathbf{C}_{4} \\ \mathbf{C}_{4} & \mathbf{C}_{4} \\ \mathbf{C}_{4} & \mathbf{C}_{4} \\ \mathbf{C}_{5} & \mathbf{C}_{5} \\ \mathbf{C}_{5} \\ \mathbf{C}_{5} & \mathbf{C}_{5} \\ $	2.4081	0.3632	0.0101			
	C_1 2.4081 C_2 0.4322		1.0791	0.0101			
	MPSD	0.2336	0.4087	7.1031			
	\mathbb{R}^2	0.9872	0.9610	0.9151			
	n_1	1.8157	1	0.1875			
	Nm_1	44.2924	118790	639.3025			
SDM2	C_1	0.6208	466029.0700	1.5853			
SF N13	C_2	2040.1167	14168420	63.0114			
	MPSD	1.2979	209.4127	1.4836			
	\mathbb{R}^2	0.9832	0.9274	0.9496			

Table S7. Fit parameters of physical-statistical bicomponent equilibrium models for NPX adsorption.

Table S8. Thermodynamic parameters from microscopic models for KTC and NPX adsorption.

T (K)	$\Delta E_1 (KJ mol^{-1})$	$\Delta E_2 (KJ mol^{-1})$
KTC		
298	34.35	16.07
313	25.52	13.64
328	16.30	10.03
NPX		
298	8.57	8.03
313	14.35	10.42
328	20.02	7.54

C _{0KTC}	C _{0NPX}	Ce KTC (ppm)	Qe KTC (mg g ⁻¹)	Rq KTC	C _{0NPX}	C _{0KTC}	Ce NPX (ppm)	Qe NPX (mg g ⁻¹)	Rq NPX
0.1	0	0	6.745	-	0.1	0	0	8.0425	-
0.3	0	0.794	19.744	-	0.3	0	0	18.96	-
0.5	0	3.837	31.60325	-	0.5	0	0.101	30.02725	-
0.7	0	9.623	45.09425	-	0.7	0	0.482	39.4345	-
0.9	0	22.53	55.95	-	0.9	0	5.312	54.7395	-
0.1	0.1	0	6.675	0.989	0.1	0.1	0	6.135	0.762
0.3	0.1	0	11.10975	0.562	0.3	0.1	0	8.12	0.428
0.5	0.1	6.378	29.2965	0.927	0.5	0.1	0	8.12225	0.270
0.7	0.1	17.785	40.22375	0.891	0.7	0.1	0	8.1425	0.206
0.9	0.1	29.235	52.71875	0.942	0.9	0.1	0	8.65	0.158
0.1	0.3	0.339	6.49275	0.962	0.1	0.3	0	18.96	2.357
0.3	0.3	1.487	19.158	0.970	0.3	0.3	0	18.01	0.949
0.5	0.3	12.714	27.6165	0.873	0.5	0.3	0	18.9525	0.631
0.7	0.3	31.091	36.93975	0.819	0.7	0.3	0	18.775	0.476
0.9	0.3	53.274	43.6665	0.780	0.9	0.3	0	18.98	0.346
0.1	0.5	0.781	6.63225	0.983	0.1	0.5	0	29.745	3.698
0.3	0.5	8.681	17.77225	0.900	0.3	0.5	0	29.3875	1.549
0.5	0.5	7.01	29.976	0.948	0.5	0.5	0.474	31.214	1.039
0.7	0.5	53.8	33.855	0.750	0.7	0.5	0.818	30.148	0.764
0.9	0.5	81.7	40.6575	0.726	0.9	0.5	1.238	30.243	0.552
0.1	0.7	9.51	4.3	0.637	0.1	0.7	19.4	34.7675	4.322
0.3	0.7	35.75	11.765	0.595	0.3	0.7	48.05	27.8375	1.468
0.5	0.7	53.96	18.38	0.581	0.5	0.7	31.86	31.5925	1.052
0.7	0.7	67.04	28.11	0.623	0.7	0.7	20.054	34.544	0.875
0.9	0.7	117.47	26.915	0.481	0.9	0.7	19.67	34.695	0.633
0.1	0.9	16.39	2.6275	0.389	0.1	0.9	21.54	50.6825	6.301
0.3	0.9	34.18	11.95	0.605	0.3	0.9	43.02	45.3125	2.389
0.5	0.9	67.8	17.8	0.563	0.5	0.9	43.93	45.085	1.501
0.7	0.9	115.54	18.1825	0.403	0.7	0.9	75.73	37.135	0.941
0.9	0.9	158.93	21.35	0.3815	0.9	0.9	81.07	35.8	0.654

Table S9. Combinations results of initial concentrations of KTC and NPX for a competing system

Fig. S4. Alteration of the main functional groups involved in the ADS process of KTC and NPX in saturated HC@MIL-53(Al) at different concentrations of both adsorbates.

Fig. S5. ADS capacity (Qe) and removal (%R) of KTC (orange) and NPX (blue) as a function of the number of cycles.