Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2024

Toxicity of mixture of nanoparticles on algae-bacteria consortia in OECD media Samridhi Rana and Arun Kumar^{2*}

¹Graduate Student, ² Professor, Department of Civil Engineering, Indian Institute of Technology, New Delhi, India

*Corresponding Author (<u>arunku@civil.iitd.ac.in</u>; +91-11-2659-1166 (Phone); +91-11-2658-1117 (Fax))

Appendix A: Previous studies

Table A.1: Various studies showing algae-bacteria consortia at different water matrix.

Reference	Algae/bacteria	Matrix	Findings	Toxicants	Parameters	Comparison with the	Remarks/ Limitations
	Information				observed	present study	
Han et al.	Bacteria: Muricauda	Wastewater	Microalgae-bacteria co-	Not present	Growth curve,	Growth profile, chl a,	No data of Toxicity of NPs; Only
(2016)	<i>sp</i> . Axenic		cultures effective strategy		algae-bacteria ratio,	chl b, biomass, lipid,	growth studies done.
	microalga:		for microalgal cultivation		plating	protein, carbohydrate,	
	Tetraselmis chuii,		under mixotrophic			EPS, FTIR, TEM etc.	
	Cylindrotheca		conditions. Algal cell				
	fusiformis &		density increases with				
	Nannochloropsis		bacteria.				
	gaditana						
Berthold et	Algae: Characium	BG-11	bacteria release of	Not present	Biomass, Lipid,	Growth profile, chl a	No data of toxicity of NPs;
al. (2019)	sp.	media	unidentified extracellular		FAME, Molecular	and b, biomass, lipid,	Mechanism unexplored.
	Bacteria:		compounds which might		phylogenetic	protein, carbohydrate,	
	Pseudomonas		affect the growth rate and		analyses	EPS, FTIR, etc	
	composti		lipid metabolism of algae.				

Ferro et al.	algal strain:	Synthetic	Culture stability along	No	Biomass, Specific	Present study has NPs	No data of Toxicity of NPs.
(2019)	Chlorella vulgaris	Municipal	with high nutrient		growth rate, O ₂ ,	and TEM was	
	Bacteria: <i>Rhizobium</i>	Wastewater	removal capacity even at		CO_2 , $N_{2,}$ Lipid,	performed along apart	
	sp.		HRTs of 5 and 3 days		Protein	from other parameters	
					Carbohydrate, FTIR	done in the study.	
Thøgersen et	Alga <i>Emiliania</i>	Growth	The presence of the alga	No	DNA isolation,	Growth profile, chl a,	No data of Toxicity of NPs; Only
al. (2018)	huxleyi	Media	facilitated the attachment		PCR, Fluorescence	chl b, biomass, lipid,	growth study
	bacterium		of the bacterium to a		tagging	protein, carbohydrate,	
	Phaeobacter		surface			EPS, FTIR, TEM etc.	
	inhibens DSM17395						
Ashok et al.	Algal-bacterial	Synthetic	Almost 90 % removal of	No	Temp., pH, chl a,	Growth profile, chl a,	condition optimum for OECD
(2014)	consortia. <i>Chlorella</i>	wastewater	Nitrogen and Phosphorus		biomass, nitrogen,	chl b, biomass, lipid,	condition or mixture of NPs
	vulgaris.		and 80% of COD (2-day		phosphorus,	protein, carbohydrate,	
	Chlamydomonas		HRT)		polysaccharides,	EPS, FTIR, TEM etc.	
	reinhardtii				alkalinity.		
Holmes et al.	Bacteria-	Simulated	In cocultures with algae,	No	Culture growth,	Growth profile, chl a	No data on toxicity of NPs; no
(2019)	Escherichia coli	wastewater	minimal or no acetate was		qPCR, organic acid	and b, biomass, lipid,	consideration for mixture of NPs
	Algae-		observed; COD removal		analysis	protein, carbohydrate,	
	Auxenochlorella		up to 66% faster than E.			EPS, FTIR	
	protothecoides		<i>coli</i> in co-culture.				
Cao et al.	Algae: Isochrysis	NMB3	Decrease in the	No	Growth, chl via	Growth profile, chl a	No NPs toxicity; no information at

(2019)	galbana	media	chlorophyll contents by		fluorescence, DNA	and b, biomass, lipid,	cellular levels (EC ₅₀ , etc).
	Bacteria:		23–74% in co-culture as		extraction, PCR,	protein, carbohydrate,	
	Pseudomonas		compared with the axenic			EPS, FTIR	
	stutzeri		culture in the period of 6				
			days.				
Segev et al	Algae: <i>Emiliania</i>	Growth	Naked algal cells covered	No	Growth profile,	Growth profile, chl a	No toxicological studies on co-
(2016)	huxleyi	media	by bacteria attached via		flow cytometry,	and b, biomass, lipid,	culture; no toxicity study due to
	Bacteria:		their poles; Over time		fluorescence, SEM,	protein, carbohydrate,	NPs
	Phaeobacter		more attachment of algae		LC-MS, chl a, cell	EPS, FTIR	
	Inhibens		with bacteria in co-		analysis.		
			culture conditions				
Fie et al	Bacteria: R.	Growth	R. radiobacter-derived	No	Growth profile,	Growth profile, chl a	No toxicity studies; no
(2019)	radiobacter	media	nitrogen stimulates fatty-		nitrogen, carbon,	and b, biomass, lipid,	consideration for OECD
	Algae: C. variabilis.		acid oxidation in C.		FAMEs.	protein, carbohydrate,	conditions
			variabilis and promotes			EPS, FTIR, TEM.	
			its growth				
Lepine et al.	Chlorella spp.	Industrial	A microalgae-bacteria	No	Cell count, pH,	Growth profile, chl a	No NPs related toxicity study
(2018)		wastewater	consortium was grown in		growth, Lipid,	and b, biomass, lipid,	
			a mixture of industrial		FAME,	protein, carbohydrate,	
			wastewater; Profitable			EPS, FTIR, TEM.	
			process from reduced				

			wastewater treatment				
			costs & no added				
			nutrients.				
Grover et al.	C. vulgaris with	Growth	Co-culturing enhanced	No	Growth profile, cell	Growth profile, chl a	No NPs related toxicity study
(2020)	Nitrobacter	media	growth (w/ increased		count. biomass	and b, biomass, lipid,	
			cellular composition and			protein, carbohydrate,	
			biomass content)			EPS, FTIR	
Contreras-	Co-culture of	Growth	Symbiotic co-culturing of	No	Biomass, cell size,	Growth profile, chl a	No NPs related toxicity study
Angulo et al.	Azospirillum	media	microalgae-bacteria on		protein	and b, biomass, lipid,	
(2019)	brasilense and		nitrogen-deficient media		carbohydrate, fatty	protein, carbohydrate,	
	Scenedesmus sp.		for enhancing microalgae		acids, nitrogen	EPS, FTIR, TEM, etc	
			colony size and the fatty				
			acid content of biomass				
			for biofuels.				
Zhou et al,	Chlorella	Antibiotic	FN5 enhanced biomass	No	Enzyme activity	Growth profile, chl a	No NPs related toxicity study
(2020)	pyrenoidosa;	containing	concentration and lipid		(SOD, MDA, CAT),	and b, biomass, lipid,	
	Bacteria: High-	Wastewater	content of microalga		SEM, EPS, IAA,	protein, carbohydrate,	
	efficient ammonia-		Chlorella pyrenoidosa;		Nitrogen removal,	EPS, FTIR, TEM,	
	oxidizing strain FN5		Chlorella pyrenoidosa-		Phosphate, COD	CAT, etc.	
			FN5 culture removed		removal		
			NH ₃ -N and accumulated				

			lipid				
Verma et al,	Algae: Chlorella sp.	Lakewater	Removals of 93%	No	Microalgal growth,	Growth profile, chl a, b,	No NP related toxicity studies
(2020)	Activated sludge		nitrates, 99% phosphates		biomass, SEM,	biomass, lipid, protein,	
			and 73% COD;		COD, FTIR,	carbohydrate, EPS,	
			maximum biomass		nutrient removal	FTIR, TEM, CAT, etc.	
			content =7.8g/L				
Xie et al.	Microalgal strain C.	Growth	Chlorella sacchrarophila	No	Microbial growth,	Growth profile, chl a	No NPs related toxicity study
(2020)	sacchrarophila	media	was grown in bioreactor		SEM, total nitrogen	and b, biomass, lipid,	
	bacterium C.		while a xylanolytic		concentration, lipid.	protein, carbohydrate,	
	pealriver		bacterium Cellvibrio			EPS, FTIR, TEM, etc	
			pealriver; During the				
			CTS strategy, the co-				
			cultivation using xylan as				
			feedstock promotes the				
			microalgal growth.				
Xu et al.	C. vulgaris, S.	Raw	Nutrient removal was	No	Wastewater	Growth profile, chl a	No NPs related toxicity study
(2021)	obliquus, Spirulina	municipal	increased; season-		characteristic,	and b, biomass, lipid,	
	platensis	wastewater	dependent nutrient		biomass, nutrient	protein, carbohydrate,	
	Aerobic activated		removal; Aeration helps		removal, pH, DO,	EPS, FTIR, TEM,	
	sludge		in the removal efficiency.		Nitrogen,	CAT, etc	
					Phosphorous, plate		

					count, TSS, Growth		
					kinetics.		
Loria et al.	C. vulgaris, C.	Growth	Several microalgal taxa	No	Biomass, lipid, TSS,	Growth profile, chl a	No NPs related toxicity study
(2021)	sorokiniana, S.	media,	bio flocculated with AS		growth profile,	and b, biomass, lipid,	
	dimorphus,	sludge	within 2 h; extent of bio-		nitrogen,	protein, carbohydrate,	
	Neochloris		flocculation varied		phosphorous, DO	EPS, FTIR, TEM,	
	oleoabundans;		between species of			CAT, etc.	
	Activated sludge (AS)		microalgae & P removal				
			was inconsistent in C.				
			<i>vulgaris</i> and <i>N</i> .				
			oleoabundans reactors,				
			but stable and high in S.				
			dimorphus in SBR				
			reactors, though S.				
			dimorphus reactors also				
			exhibited the poorest				
			settleability				
Huo et al.	Algae Chlorella sp.	Vinegar	Nutrient removal rates	No	TN, TFA, Cell	Growth profile, chl a	No NPs related toxicity study
(2020)	Bacteria: Bacillus	production	were significantly		count, TN, TP,	and b, biomass, lipid,	

	firmus and	Wastewater	increased after adding		COD, Lipid,	Fatty	protein, carbohydrate,	
	Beijerinckia		bacteria cultures; Mean		acid		EPS, FTIR, TEM,	
	fluminensis		growth rate of Chlorella				CAT, etc.	
			was decreased slightly					
			after co-cultures with					
			bacteria; B. fluminensis					
			enhanced the pigment					
			content of Chlorella sp.;					
			Co-culturing had more					
			notable effect on fatty					
			acid composition rather					
			than oil content.					
Mujtaba et	microalga Chlorella	Municipal	higher removal of both	No	TP, TN, O	COD,	Growth profile, chl a	No NPs related toxicity study
al. (2017)	vulgaris; bacterium	wastewater	nutrients and COD in		TOC, TSS,	Cell	and b, biomass, lipid,	
	Pseudomonas putida.		coculture than each		growth, waste	ewater	protein, carbohydrate,	
			axenic culture; the best		characterisation	on	EPS, FTIR, TEM,	
			removal performance				CAT, etc.	
			with suspended P. putida					
			and immobilized C.					
			vulgaris					

Xu et al.	Chlorella vulgaris,	Municipal	In summer & autumn	No	Biomass, plate	Growth profile, chl a	No NPs related study
(2021 b)	Scenedesmus	wastewater	seasons high removal		count, COD, pH,	and b, biomass, lipid,	
	obliquus, Spirulina		rates and biomass		DO, TP, TN,	protein, carbohydrate,	
	platensis		production percentages.		nutrient removal	EPS, FTIR, TEM,	
			In summer season with		kinetics, growth	CAT, etc.	
			aeration, highest specific		kinetocs		
			growth rate was 0.46 d -1 ;				
			the highest TN removal				
			rate was 2.34 d^{-1} ; and the				
			highest TSS removal				
			efficiency was 96.3 \pm				
			2.1%. In autumn season				
			with aeration highest TP				
			removal rate was 1.67				
			d ⁻¹ . An overall analysis				
			indicated that Chlorella				
			vulgaris and				
			Scenedesmus obliquus,				
			combined with bacteria				
			(Proteobacteria,				
			Firmicutes,				

			Bacteroidetes,Chloroflexi)caneffectively use differentcarbon, nitrogen, and				
			phosphorus sources from wastewater in different seasons.				
Xu et al,	Algae: Chlorella	Growth	Two bacterial strains of	No	Biomass, cell count.	Growth profile, chl a	No NPs related toxicity study
(2021 a)	vulgaris	media	different genera were		Nutrient removal,	and b, biomass, lipid,	
	Bacteria: Bacillus.		isolated from Chlorella		growth kinetics, chl	protein, carbohydrate,	
			vulgaris; Bacillus strain		а	EPS, FTIR, TEM,	
			improved algae growth,			CAT, etc.	
			photosynthesis, and				
			nutrient removal; 7-day				
			optimal co-culturing				
			conditions with 10:1				
			bacteria-to-microalgae				
			ratio				
Tao et al.	Chlorella sp. and	Growth	Consortium improved	No	Cell count, growth	Growth profile, chl a	No NPs related toxicity study
(2020)	Bacillus simplex	media	phenol degradation		kinetics, phenol	and b, biomass, lipid,	
			efficiency and Chlorella		degradation	protein, carbohydrate,	

			<i>sp</i> . Growth			EPS, FTIR, TEM,	
						CAT, etc.	
Li et al.	Scenedesmus		Co-culture was found	No	Biomass, cell	Growth profile, chl a	No NPs related toxicity studies
(2021)	obliquus and		more efficient in treating		growth, chl a, chl b,	and b, biomass, lipid,	
	Bacillus megaterium		high concentration biogas		lipid, TP, TN, COD,	protein, carbohydrate,	
	0		slurry compared with the		etc.	EPS, FTIR, TEM,	
			pure microalgae culture.			CAT, etc.	
			Co-culture could				
			efficiently reduce various				
			nutrients in biogas slurry				
			and simultaneously				
			accumulate biomass with				
			higher biofuel				
			characteristics.				
Wang et al.	Monoculture and co-	Swine	When co-cultivated, the	No	Biomass, pH, TN,	Growth profile, chl a	NPs toxicity was not studied.
(2021)	culture of algae	manure	algal growth and		COD, DO, cell	and b, biomass, lipid,	
	(Chlorella vulgaris)		precipitation (harvest)		count, SEM, DNA,	protein, carbohydrate,	
	and bacteria		were promoted, while		Biomass settling	EPS, FTIR, TEM,	
	(activated sludge)		aerobic bacteria growth		efficiency	CAT, etc.	
			was initially promoted,				
			and then inhibited.				

Wang et al.,	Algae-bacteria	Cooking	ABC reactors show	No	COD, TN, pH, SS,	Growth profile, chl a	NPs toxicity not discussed
2022	consortia (ABC) in	wastewater	satisfactory removal		biomass, EPS,	and b, biomass, lipid,	
	activated sludge		ability. ABC can secrete		BOD, chl a	protein, carbohydrate,	
			large EPS to protect			EPS, FTIR, TEM,	
			themselves and form			CAT, etc.	
			flocs with good				
			sedimentation				
			performance under toxic				
			and refractory organic				
			wastewater stress.				
Rossi et al.,	<u>Chlorellaceae</u> (1·10 ⁶	Piggery	Removal of NH ₄ ⁺ , PO ₄ ³⁻	No	TSS, TAN, COD,	Growth profile, chl a	NPs were not present in this study.
2022	$cell \cdot mL^{-1}),$	wastewater	(90%) and COD (59%),		Biomass, chl a,	and b, biomass, lipid,	
	Scenedesmaceae		with 10.7 g/m ² /d biomass		FDA, SEM.	protein, carbohydrate,	
	$(0.2 \cdot 10^6 \ cell \cdot mL^{-1})$		productivity. The process			EPS, FTIR, TEM,	
	and		allowed to reduce the			CAT, etc.	
	Chlamydomonadacea		nitrogen spread to arable				
	$e (0.2 \cdot 10^6 \text{ cell} \cdot \text{mL}^{-1});$		land by 77%, by				
	bacterial culture:		increasing the nitrogen				
	heterotrophs and		valorised as				
	nitrifiers.		biofertilizers/ bio				
			stimulants and the				

			nitrogen released to the				
			atmosphere.				
Xu et al.,	Cladophora,	Wastewater	The addition of	Atrazine	DO, biomass, TN,	Growth profile, chl a	NPs not studied.
2023	activated sludge		microorganisms		TP, COD, chl a, chl	and b, biomass, lipid,	
			increases the removal		b, SOD, POD,	protein, carbohydrate,	
			efficiency of TN in		MDA, EPS.	EPS, FTIR, TEM,	
			atrazine-containing			CAT, etc.	
			wastewater by 43.70%,				
			and the addition of				
			Cladophora further				
			increased by 3.82%. The				
			protein signal produced				
			by the microbial release				
			of EPS triggered the algal				
			resistance mechanism,				
			and the conversion and				
			electron transfer between				
			humic acid and fulvic				
			acid constituted the				
			synergistic effect.				
			Proteobacteria was the				

			dominant phylum under				
			atrazine stress,				
			accounting for 56.70%-				
			59.67% in the single				
			bacteria groups, whereas				
			it accounted for				
			approximately 3% more				
			in the algae-bacteria				
			consortia.				
Cheng et al.,	Laboratory grown	Municipal	A new type of algae-	No	pH, TDS, TN, ICP-	Growth profile, chl a	NPs presence was absent.
2022	algae and bacteria	wastewater	bacteria biofilm reactor		MS, biomass,	and b, biomass, lipid,	
	from activated sludge		(ABBR) was designed.			protein, carbohydrate,	
			ABBR allowed a marked			EPS, FTIR, TEM,	
			improvement on the			CAT, etc.	
			removals of IMI, TDN,				
			TDP and cod during the				
			16-day operation.				
			Meanwhile, more IMI				
			degradation products				
			were found in PBR while				
			lower biological toxicity				

Wang et al., 2023	Trebouxiophyceae, Saccharimonadal es, Propionibacte riaceae, Propioni ciclava, and Micropruina	Municipal wastewater	was detected in ABBR. Furthermore, it's also proved that light played an important role on the performance of ABBR, and a much higher removal efficiency was achieved under 80 µmol m-2·s-1. The addition of algae led to an increase in sedimentation performance, biomass, and EPS. The AEBC had a maximum 77.15 % removal rate of C, 63.22 % of N, and 82.54 % of P, respectively. The effluent of algae enhanced reactors suggested that algae had significant	NPs, abiotic stress	Total DNA, PCR, SEM, biomass, chl a, chl b, carotenoid, PCA.	Growth profile, chl a and b, biomass, lipid, protein, carbohydrate, EPS, FTIR, TEM, CAT, etc.	No NPs were used in this study.
----------------------	---	-------------------------	--	---------------------------	---	---	---------------------------------

	effects o	n pollutant		
	removal.			

S.No.	Nanoparticle	Algae used	NPs conc.	Time	References
	used			duration	
1.	ZnO	Chlorella	0.5, 1, 2 mg/L	72 h	Ko et al., 2018
	CuO	vulgaris	8, 16, 33		
			mg/L		
2.	ZnO	Chlamydomonas	1-100 mg/L	8 days	Gunawan et al.,
		reinhardtii			2013
3.	ZnO	Skeletonema	5-50 mg/L	96 hrs.	Zhang et al., 2016
		costatum			
4.	ZnO	Phaeodactylum	0.1-10 mg/L	72 hrs.	Li et al., 2017
		tricornutum			
		(marine diatom)			
5.	ZnO	Scenedesmus	0.01 -50 mg/L	72 hrs.	Ye et al., 2018
		obliquus			
6.	ZnO and	Scenedesmus	1 mg/L	96 hrs.	Ye et al., 2017
	CuO	obliquus			
7.	ZnO and	Scenedesmus	1 and 10 mg/L	35 days	Rana and Kumar,
	CuO	obliquus			2023
8.	ZnO and	Scenedesmus	0.1, 1, 10 and	96 hrs.	Rana and Kumar,
	CuO	obliquus	100 mg/L		2023
9.	MWCNTs	Tetradesmus	0.01-200	96 hrs.	Fang et al., 2022
	and CuO	obliquus	mg/L		
10.	nTiO ₂ and	Scenedesmus	0.4-3.2 mg/L	72 hrs.	Das et al., 2024
	BPA	obliquus			

 Table A. 2: Concentrations of NP used in previous toxicity studies.

Appendix B: Methodology

B.1 Estimation of different parameters using analysis data

B.1.1. Growth Profile and cell number

Growth curve or growth profiling shows the number of cells growing in a population against time for various phases of growth (such as lag phase, log or exponential phase, stationary phase and decline phase). Absorbance at 750 nm was taken after every alternate day till t=96 hours as per the method given in the (Trenkenshu et al., 2009) study. Absorbance was adjusted for NP presence by subtracting OD of NP only suspension from OD of suspension containing both NP and algae. Cell number was counted every alternate day and cell density was calculated using the equation A.1 (Guillard, 1973):

Cell Density (per ml) = Total number of cells * 25000 * Dilution Factor......(A.1)

B.1.2 Dry cell weight

Dry cell weight (dcw) of the microalgal strain was determined gravimetrically according to Rai et al. (1991). Briefly, the dry weight of the microalgae biomass with a known volume i.e., 5 ml was centrifuged at 5000 rpm (REMI C-24) _ for 10 min. The harvested biomass was dried at 105°C until the weight was invariant. The microalgae dry weight was obtained by subtracting the blank biomass. The OD₆₈₀ value was converted to biomass concentration via appropriate calibration between OD₆₈₀ and dry cell weight as per the following obtained Eq. (B.2):

$$Dry \ weight \ of \ biomass = \frac{Final \ weight(g) - initial \ weight(g)}{initial \ weight(g)} \dots \dots \dots \dots (B.2)$$

B.1.3 Specific growth rate

Specific growth rate can be defined as the rate of increase of biomass of a cell per unit of biomass concentration with respect to time. The specific growth rate (μ : day⁻¹) was determined

at different intervals from day 0 to 96 hours based on the values obtained from the cell concentration using the equation (B.3) proposed by Arredondo et al., 2017:

$$\mu = \frac{\ln N2 - \ln N1}{t2 - t1} \tag{B.3}$$

where N1 and N2 are the cell density values at times t1 and t2, respectively. Cell densities were calculated using the formula mentioned above in equation 1 at different time intervals from day 0 to day 96 hours.

Maximum specific growth (μ_{max}) was calculated using the different μ values calculated for all the samples. Cell doubling time was also calculated using the following equation (B.4) (Sankar et al., 2011):

$$t_d = \frac{ln2}{\mu_{max}} \qquad \dots$$

(B.4)

B.1.4 Determination of Chlorophyll a & b and Carotenoid

Chlorophyll a and b, colourful pigments, are found in plants and algal cells. Chlorophyll a (green pigment) plays an important role in the photosynthesis process. Chlorophyll b (also a green pigment) absorbs blue-violet wavelength light. Carotenoid, pigments help in the process of photosynthesis. At t=96 hours, 10 mL algae suspension was collected and centrifuged at 4,000 ×g for 10 min. After the removal of the supernatant, 2.5 mL of 80% (V/V) acetone was added and extracted. The extracts were then centrifuged at 10,000 ×g for 10 min. The supernatant was analyzed for optical density at 350–700 nm light wavelength continuously (UV/Visible spectrophotometer, Hitachi). The contents of chl-a and chl -b, and carotenoids were calculated according to equations (B.5-B.7) given in the Xiong et al. (2005) study:

Chlorophyll a, $C_A = (12.7 \ OD_{663} - 2.69 \ OD_{645})_{a}$	3. 5)
Chlorophyll b, $C_B = (22.9 \ OD_{645} - 4.68 \ OD_{633})_{abc}$	3.6)
Carotenoid, $C_k = (1000 \ OD_{440} - 1.9 \ C_A - 63.14 \ C_B) \div 214$ (B)	.7)

where, C_A (µg/ml) and C_B (µg/ml) are contents of chl-a and chl-b, and C_K (µg/ml) is content of carotenoids.

B.1.5 Protein content

Algal cells are said to have high amount of proteins, amino acids and lipids. For protein content determination, the Bradford assay was followed (Bradford, 1975). Bradford reagent was made using 50 mg of Coomassie Brilliant Blue G-250 in 50 mL methanol. Then, 100 mL of 85 % phosphoric acid was taken and transferred to make the volume 1 L by using 850 mL H₂O. 10 dilutions of BSA (Bovine Serum Albumin) were prepared and standard curve was made up. Absorbance was measured at 595 nm using spectrophotometer.

B.1.6 Lipid content

Total lipid content was calculated using the Bligh and Dyer method (1959) gravimetrically. A know volume of dried biomass was taken and was washed with (2:1 v/v) Chloroform-methanol solution. The extract was then dissolved in 1 ml of chloroform and transferred into glass vial of 15 ml (pre-weighted). The extract was dried and kept in desiccator containing silica gel for 24 hours and then weighed. The value of lipid content was calculated using equation (B.8).

 $Lipid Content = \frac{Weight of lipid + Vial (final weight of vial) - weight of empty vial}{dry weight biomass} X 100\% (B.8)$

B.1.7 Microscopic Characterization

For the structural analysis of different samples, microscopic characterization of all the samples at t=0 and t=96 hours was done using Transmission Electron Microscopy (TEM) (instrument: JEOL 2100F). Microscopic characterisation was done to see the changes and aggregation formation inside and outside the algal cells and in the suspension. The size of NPs was determined using TEM, and the observed size of standard suspension of NPs was < 50 nm for CuO NPs and < 40 nm for ZnO NPs. Also, at 10X and 40X, the microscopic images were also taken using the table-top microscope (Olympus CX21i).

B.1.8 FTIR (Fourier Transmittance Infrared Spectroscopy)

FTIR was done to see the presence of bio component in the algal biomass. Samples (1.5 mL) were collected at t=0 and t=96 hours and centrifuged for 5 min at 10,000 rpm, followed by discarding of supernatant. 10 μ l of the sample was used for the FTIR analysis (Instrument: NICOLET - IS-50, Thermo). IR spectra were recorded with transmission mode in the spectral range of 4000-800 cm⁻¹.

B.1.9 Metal and ion Content

Metal and ion content in suspension was calculated by taking sample from the flask at t=0 and t=96 hrs., digesting it with acid (3050G method (APHA, 1998)) and analysing it with ICP-MS (ICP-MS Agilent 7900). Using obtained values at T=0 and t=96 hours for all the samples, change in metal contents of suspension was calculated.

B.1.10 Measurement of hydrodynamic diameter of particles and zeta potential

For particle size measurement using DLS, the suspension was ultrasonicated (100 W, 33 ± 3 kHz) for 30 min. The suspension was then transferred in cuvettes for size determination. The DLS size (hydrodynamic diameter) was observed to be in a range of 90–400 nm for standard NPs. The variation of HDD at t=0 and t=96 hours was studied to observe change in size of nanoparticles over a period in the algal suspension. Values were measured using the dynamic

light scattering particle sizer (Nicomp Zetasizer ZLS380; wavelength= 633 nm; detector angle=173⁰.

B.1.11 CAT assay

CAT assay was analysed for all the samples using the CAT assay analysing kit obtained from Sigma Aldrich (CAT-100). All the steps which were performed was as per the instructions of the kit.

B.1.12 EPS estimation and quantification

EPS extraction was done by the using ethanol method as mentioned by Gong et al., 2009, Jolanta Jaroszuk-Ściseł et al., 2020. EPS lipid, EPS protein and EPS carbohydrate was estimated using the procedure as described in above sections.

Component	Concentration (mg/L)
NaHCO ₃	50.00
NH ₄ Cl	15.00
MgCl ₂ .6H ₂ O	12.00
CaCl ₂ .2H ₂ O	18.00
MgSO ₄ .7H ₂ O	15.00
KH ₂ PO ₄	1.60
FeCl ₃ .6H ₂ O	0.0640
Na ₂ EDTA.2H ₂ O	0.100
H ₃ BO ₃	0.185
MnCl ₂ .4H ₂ O	0.415
ZnCl ₂	0.00300
CoCl ₂ .6H ₂ O	0.00150
Na ₂ MnO ₄ .2H ₂ O	0.00700
CuCl ₂ . 2H ₂ O	0.00001

 Table B.1: Composition of the OECD TG 201 media. (pH-8.1)

Table B.2: Following is the BG-11 media composition. (Hong et al., 2016)

BG-11 media composition

A) Stock solutions for BG-11

Stock solution -1

Na ₂ MG EDTA	0.1 gm/L
Ferric ammonium citrate	0.6 gm/L
Citric acid. 1 H ₂ O	0.6 gm/L
CaCl ₂ . 2 H ₂ O	3.6 gm/L

Autoclave the solution.

Stock solution -2

MgSO ₄ . 7 H ₂ O	7.5 gm/L

Autoclave the solution.

Stock solution-3

K ₂ HPO ₄	3.05 gm/L

Autoclave the solution.

<u>Stock solution -4</u>

H ₃ BO ₃	2.86 gm/L
MnCl ₂ . 4H ₂ O	1.81 gm/L

ZnSO ₄ . 7H ₂ O	0.22 gm/L
CuSO ₄ . 5H ₂ O	0.079 gm/L
CoCl ₂ . 6H ₂ O	0.050 gm/L
NaMoO ₄ . 2H ₂ O	0.391 gm/L

Autoclave the solution.

As per the method of paper Hong et al., 2016 and Pandey et al., 2023; Air or carbon dioxide has been provided to the algal culture externally.

Appendix C: Results

C.1 Effect on algae pigments

Figure C.1.1: Chl a content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.1.2: Chl a content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

Figure C.1.3: Chl b content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (100:1).

Figure C.1.4: Chl b content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.1.5: Chl b content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

Figure C.1.6: Carotenoid content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.1.7: Carotenoid content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.1.8: Carotenoid content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

C.2 Effect on algal and bacterial cell count and biomass

Conc. (mg/L)	%GR ZnO	%GR CuO	%GR Dual	% (GR) _{cal}	% (GR) _{obs}	%GR (GR) _{diff}	Remark
0.1+0.1	35.05	38.64	27.27	73.69	27.27	46.42	Antagonistic
1+1	41.08	45.76	32.65	86.84	32.65	54.19	Antagonistic
10+10	51.09	55.76	42.93	106.85	42.93	63.92	Antagonistic
100+100	66.23	69.63	61.90	135.86	61.90	73.96	Antagonistic

 Table C.1. Calculation of % growth reduction difference for algal cell count for 100:1

 ratio.

(Antagonistic as %(GR)_{diff}=Positive)

Table C.2: Calculation of Standard Error Difference for algal cell count.

Conc. (mg/L)	SE ZnO	SE CuO	SE Dual	(SE) _{cal}	(SE) _{obs}	(SE) _{diff}
0.1+0.1	2.43	4.52	3.67	6.95	3.67	7.859
1+1	3.56	5.43	4.02	8.99	4.02	9.848
10+10	3.99	6.43	4.87	10.42	4.87	11.502
100+100	5.78	8.34	6.88	14.12	6.88	15.707

 Table C.3: Calculation of t-statistics for algal cell count.

Conc. (mg/L)	% (GR) _{cal}	% (GR) _{obs}	(SE) _{diff}	t _{cal}	t _{obs}	Remark
0.1+0.1	73.69	27.27	7.859	9.377	3.47	Significant
1+1	86.84	32.65	9.848	8.818	3.32	Significant
10+10	106.85	42.93	11.502	9.290	3.73	Significant
100+100	135.86	61.90	15.707	8.650	3.94	Significant

(Significant as $t_{cal} > t_{obs}$)

Table C.4. Calculation of % growth reduction difference for bacterial cell count.

Conc. (mg/L)	%GR ZnO	%GR CuO	%GR Dual	% (GR) _{cal}	% (GR) _{obs}	%GR (GR) _{diff}	Remark
0.1+0.1	16.33	18.42	10.53	34.75	10.53	24.22	Antagonistic
1+1	18.65	23.45	13.64	42.10	13.64	28.46	Antagonistic
10+10	23.65	27.04	16.92	50.69	16.92	33.77	Antagonistic
100+100	26.09	30.89	18.67	56.98	18.67	38.31	Antagonistic

(Antagonistic as %(GR)_{diff}=Positive)

Conc. (mg/L)	SE ZnO	SE CuO	SE Dual	(SE) _{cal}	(SE) _{obs}	(SE) _{diff}
0.1+0.1	3.45	4.06	5.43	7.51	5.43	9.27
1+1	4.98	6.56	6.83	11.54	6.83	13.41
10+10	6.09	9.45	7.98	15.54	7.98	17.47
100+100	8.72	11.23	9.32	19.95	9.32	22.02

Table C.5: Calculation of Standard Error Difference for bacterial cell count.

Table C.6: Calculation of t-statistics for bacterial cell count.

Conc. (mg/L)	% (GR) _{cal}	% (GR) _{obs}	(SE) _{diff}	t _{cal}	t _{obs}	Remark
0.1+0.1	34.75	10.53	9.27	3.75	1.14	Significant
1+1	42.10	13.64	13.41	3.14	1.07	Significant
10+10	50.69	16.92	17.47	2.90	0.968	Significant
100+100	56.98	18.67	22.02	2.59	0.848	Significant

(Significant as $t_{cal} > t_{obs}$)

Figure C.2.1: Cell count in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (100:1).

Figure C.2.2: Cell count in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.2.3: Cell count in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

OECD+Algae+Bacteria
OECD+Algae+Bacteria+ZnO (1:100)
OECD+Algae+Bacteria+CuO (1:100)
OECD+Algae+Bacteria+CuO+ZnO (1:100)
OECD+Algae+Bacteria+ZnO (100:1)
OECD+Algae+Bacteria+CuO+ZnO (100:1)
OECD+Algae+Bacteria+CuO+ZnO (1:1)
OECD+Algae+Bacteria+ZnO (1:1)
OECD+Algae+Bacteria+CuO (1:1)
OECD+Algae+Bacteria+CuO (1:1)

Figure C.2.4: Biomass in the various samples containing algae+bacteria at different concentration (0, 0.1, 1, 10 and 100 mg/L) of ZnO, CuO and ZnO+CuO NPs in the OECD media at after 96 hours at different ratios. Error bars indicate one standard deviation value of three replicates around average values; *: significance (p < 0.05).

Figure C.3 shows the total biomass of various samples at different concentrations of ZnO, CuO and CuO+ZnO NPs after 96 hours at different ratios. At 0.1 mg/L concentration of NPs in the mixture samples, the decrease in the total biomass after 96 hours in OECD media at different ratio of algae-bacteria (1:100, 100:1, 1:1) was found to be $44.74\pm1.31\%$, $43.91\pm0.67\%$ and $46.85\pm1.11\%$ respectively. At 1 mg/L concentration of NPs in the mixture samples, the reduction in the total biomass after 96 hours in OECD media at different ratio of algae-bacteria (1:100, 100:1, 1:1) was found to be $45.51\pm1.23\%$, $53.12\pm1.73\%$ and $51.99\pm0.93\%$ respectively. At 100 mg/L concentration of NPs in the mixture samples, decrease in the total biomass after 96 hours in OECD media at different ratio of algae-bacteria (1:100, 100:1, 1:1) was found to be $45.51\pm1.23\%$, $53.12\pm1.73\%$ and $51.99\pm0.93\%$ respectively. At 100 mg/L concentration of NPs in the mixture samples, decrease in the total biomass after 96 hours in OECD media at different ratio of algae-bacteria (1:100, 100:1, 1:1) was found to be $61.45\pm1.83\%$, $62.67\pm0.63\%$ and $61.51\pm0.62\%$ respectively. For the samples containing OECD media, one-way ANOVA result shows effect of ratio on mixture of NPs (p<0.05) indicating effect of various concentration on total biomass having in all the three ratios in OECD media. 3-way ANOVA shows that, there was a significant effect of concentration, nanoparticles type and ratio on total biomass.

For the single NPs (CuO NPs and ZnO NPs) in algae-bacteria samples at different ratios (0, 0.1, 1, 10 and 100 mg/L) at different concentrations after 96 hours, total biomass shown in Figure 5. For 0.1 mg/L concentration, decrease in the total biomass in the samples containing CuO NPs in OECD media having algae-bacteria at different concentration (1:100, 100:1, 1:1) was observed to be 54.51±1.63%, 49.32±0.34% and 47.97±1.37% respectively. For 0.1 mg/L of ZnO NPs, the reduction in total biomass was found to be 50.80±1.18%, 50.06±2.13% and 49.57±1.12% respectively. For 100 mg/L concentration, the decrease in the total biomass in the samples containing CuO NPs in OECD media having algae-bacteria at different concentration (1:100, 100:1, 1:1) was observed to be 67.49±1.06%, 67.83±1.93% and 70.36±1.18% respectively. For 100 mg/L concentration, the reduction in the total biomass in the samples containing ZnO NPs in OECD media having algae-bacteria at different concentration (1:100, 100:1, 1:1) was observed to be 64.41±2.13%, 67.35±1.19% and 67.89±1.59% respectively. For the samples containing algae-bacteria in the OECD media, oneway ANOVA shows the significant effect on the total biomass on all the concentrations at different ratios. 3-way ANOVA results shows that there was significant effect on total biomass w.r.t concentration, ratio, and nanoparticles. The maximum decrease in the sample in total biomass was observed to be in the ratio 1:1 followed by 100:1 and 1:100 in all the samples containing single and mixture of NPs.

Figure C.2.5: Biomass in the sample containing different concentrations of nanoparticles at algaebacteria ratio (1:100).

Figure C.2.6: Biomass in the sample containing different concentrations of nanoparticles at algaebacteria ratio (1:1).

3.3. Effect on algae-bacteria consortia

Lipid and Protein content

OECD+Algae+Bacteria
OECD+Algae+Bacteria+ZnO (1:100)
OECD+Algae+Bacteria+CuO (1:100)
OECD+Algae+Bacteria+CuO+ZnO (1:100)
OECD+Algae+Bacteria+ZnO (100:1)
OECD+Algae+Bacteria+CuO+ZnO (100:1)
OECD+Algae+Bacteria+ZnO (1:1)
OECD+Algae+Bacteria+CuO (1:1)
OECD+Algae+Bacteria+CuO (1:1)
OECD+Algae+Bacteria+CuO (1:1)

Figure C.3.2: Lipid content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.3.3: Lipid content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

Figure C.3.4: Protein content in the various samples containing algae+bacteria at different concentration (0, 0.1, 1, 10 and 100 mg/L) of ZnO, CuO and ZnO+CuO NPs in the OECD media at after 96 hours at different ratios. Error bars indicate one standard deviation value of three replicates around average values; *: significance (p < 0.05).

Figure C.4 shows the protein content in all the samples at different ratios. At 0.1 mg/L concentration of NPs in the mixture samples, the increase in the protein content after 96 hours in OECD media at different ratio of algae-bacteria (1:100, 100:1, 1:1) was found to be $18.02\pm1.63\%$, $23.49\pm1.15\%$ and $7.19\pm1.73\%$ respectively. At 1 mg/L concentration of NPs in the mixture samples, the increase in the protein content after 96 hours in OECD media at different ratio of algae-bacteria (1:100, 100:1, 1:1) was found to be $18.02\pm1.64\%$, $21.14\pm1.53\%$ and $10.06\pm2.09\%$ respectively. At 100 mg/L concentration of NPs in the mixture samples, increase in the protein content after 96 hours in OECD media, increase in the protein content after 96 hours in OECD media at different ratio of algae-bacteria (1:100, 100:1, 1:1) was found to be $1.05\pm1.49\%$, $22.34\pm1.54\%$ and $23.28\pm1.47\%$ respectively. For the samples containing OECD media, one-way ANOVA result shows effect of ratio on mixture of NPs (p<0.05) indicating effect of various concentration on protein content having in all the three ratios in OECD media. 3-way ANOVA shows that, there was a significant effect of concentration, nanoparticles type and ratio on protein content.

For the single NPs (CuO NPs and ZnO NPs) in algae-bacteria samples at different ratios (0, 0.1, 1, 10 and 100 mg/L) at different concentrations after 96 hours, protein content shown in Figure 7. For 0.1 mg/L concentration, increase in the protein content in the samples containing CuO NPs in OECD media having algae-bacteria at different concentration (1:100, 100:1, 1:1) was observed to be 21.43±1.74%, 25.73±1.37% and 10.69±1.39% respectively. For 0.1 mg/L of ZnO NPs, the increase in the protein content was found to be $19.02\pm1.41\%$, $25.85\pm2.21\%$ and 9.55±2.31% respectively. For 100 mg/L concentration, the increase in the protein content in the samples containing CuO NPs in OECD media having algae-bacteria at different concentration (1:100, 100:1, 1:1) was observed to be 4.06±1.59%, 26.26±1.73% and 26.39±2.03% respectively. For 100 mg/L concentration, the increase in the protein content in the samples containing ZnO NPs in OECD media having algae-bacteria at different concentration (1:100, 100:1, 1:1) was observed to be 2.63±0.82%, 25.13±0.99% and 25.13±1.04% respectively. For the samples containing algae-bacteria in the OECD media, oneway ANOVA shows the significant effect on the protein content on all the concentrations at different ratios. 3-way ANOVA results shows that there was significant effect on protein content w.r.t concentration, ratio, and nanoparticles.

Figure C.3.5: Protein content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.3.6: Protein content in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

3.4 EPS Constituents

Figure C.4.1: EPS-related lipid in the various samples containing algae+bacteria at different concentration (0, 0.1, 1, 10 and 100 mg/L) of ZnO, CuO and ZnO+CuO NPs in the OECD media at after 96 hours at different ratios. Error bars indicate one standard deviation value of three replicates around average values; *: significance (p < 0.05).

Figure C.4.2: EPS generated lipid in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.4.3: EPS generated lipid in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

Figure C.4.4: EPS-related carbohydrate in the various samples containing algae+bacteria at different concentration (0, 0.1, 1, 10 and 100 mg/L) of ZnO, CuO and ZnO+CuO NPs in the OECD media at after 96 hours at different ratios. Error bars indicate one standard deviation value of three replicates around average values; *: significance (p < 0.05).

Figure C.4.5: EPS generated carbohydrate in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.4.6: EPS generated carbohydrate in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

Figure C.4.7: EPS generated protein in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.4.8: EPS generated protein in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

^{3.5} Metal and ion release

Figure C.5.1: Metal content (% of initially applied metal content) in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.5.2: Metal content (% of initially applied metal content) in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

Figure C.5.3: % ion release (% of initially applied metal content) in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:100).

Figure C.5.4: % ion release (% of initially applied metal content) in the sample containing different concentrations of nanoparticles at algae-bacteria ratio (1:1).

Figure C.5.5: % of ions released after t=96 hours vs. NPs concentrations (mixture as well as single) (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L and 100 mg/L) at different ratio of algae-bacteria consortia (1:100, 100:1 and 1:1). * Shows the significance among the control samples and samples containing ZnO NPs and CuO alone at different concentrations.

3.6 Interrelationship of different parameters

Figure 3.6.1: EPS Lipid (normalised with biomass) (mg/mg) vs. EPS Metal (mg/mg) after t=96 hours at different concentrations (0, 0.1 mg/L, 1 mg/L, 10 mg/L, and 100 mg/L) at 100:1 ratio. All the trend shows R value above 0.9.

Figure 3.6.2: EPS Carbohydrate (normalised with biomass) (mg/mg) vs. EPS Metal (mg/mg) after t=96 hours at different concentrations (0, 0.1 mg/L, 1 mg/L, 10 mg/L, and 100 mg/L) at 100:1 ratio. Blue colour shows 0 mg/L, yellow colour shows 0.1 mg/L, green colour shows 1 mg/L, red colour shows 10 mg/L, and purple colour shows 100 mg/L. All the trend shows R value above 0.9.

Figure C.6.3: Chl b (normalised with algal biomass) (mg/mg) vs. CAT Activity after t=96 hours at different concentrations (0, 0.1 mg/L, 1 mg/L, 10 mg/L, and 100 mg/L) at 100:1 ratio. R value was found to be above 0.9 for all the samples.

Figure C.6.4: Carotenoid (normalised with algal biomass) (mg/mg) vs. CAT Activity after t=96 hours at different concentrations (0, 0.1 mg/L, 1 mg/L, 10 mg/L, and 100 mg/L) at 100:1 ratio. Blue colour shows 0 mg/L, green colour shows 0.1 mg/L, yellow colour shows 1 mg/L, red colour shows 10 mg/L and purple colour shows 100mg/L concentration respectively. All the trend shows R value above 0.9.

Figure C.6.5: Protein content (normalised with algal biomass) (mg/mg) vs. CAT Activity after t=96 hours at different concentrations (0, 0.1 mg/L, 1 mg/L, 10 mg/L, and 100 mg/L) at 100:1 ratio. Blue colour shows 0 mg/L, yellow colour shows 0.1 mg/L, green colour shows 1 mg/L, red colour shows 10 mg/L, and purple colour shows 100 mg/L. All the trend shows R value above 0.9.

Figure C.6.6: Lipid (normalised with algal biomass) (mg/mg) vs. CAT Activity after t=96 hours at different concentrations (0, 0.1 mg/L, 1 mg/L, 10 mg/L, and 100 mg/L) at 100:1 ratio. Blue colour shows 0 mg/L, yellow colour shows 0.1 mg/L, green colour shows 1 mg/L, red colour shows 10 mg/L, and purple colour shows 100 mg/L. All the trend shows R value above 0.9.

Figure C.6.7: Carbohydrate (normalised with algal biomass) (mg/mg) vs. CAT Activity after t=96 hours at different concentrations (0, 0.1 mg/L, 1 mg/L, 10 mg/L, and 100 mg/L) at 100:1 ratio. Blue colour shows 0 mg/L, yellow colour shows 0.1 mg/L, green colour shows 1 mg/L, red colour shows 10 mg/L, and purple colour shows 100 mg/L. All the trend shows R value above 0.9.

Parameters	NPs Conc.		Equation of linear model	Coefficientofdetermination (R2)
EPS-related protein vs metal on algal-bacteria consortium	CuO only		Y=0.0054x+0.1609	0.8749
	ZnO only		Y=0.0062x+0.1467	0.88
	Mixture NPs	of	Y=0.005x+0.1564	0.916
EPS-related lipid vs metal on algal-bacteria consortium	CuO only		Y=0.2823x+28.543	0.901
	ZnO only		Y=0.7723x+32.039	0.9086
	Mixture NPs	of	Y=0.8856x+27.088	0.986
EPS-related carbohydrate vs metal on algal-bacteria consortium	CuO only		Y=3.8919x+179.22	0.9368
	ZnO only		Y=3.5522x+179.91	0.9395
	Mixture NPs	of	Y=3.1038x+166.37	0.9779
CAT activity vs metal on algal-bacteria consortium	CuO only		Y=2.674x+22.348	0.9761
	ZnO only		Y=2.6719x+26.639	0.99
	Mixture NPs	of	Y=0.9723x+14.102	0.9655
Chl a vs. CAT activity	CuO only		Y=5.9368x+656.19	0.9749
	ZnO only		Y=5.3524x+684.56	0.9528
	Mixture NPs	of	Y=6.824x+742.56	0.9974
Chl b vs. CAT activity	CuO only		Y=0.6682x+46.847	0.8312
	ZnO only		Y=0.7776x+42.808	0.8205
	Mixture NPs	of	Y=1.0598x+33.804	0.901
Carotenoid vs. CAT activity	CuO only		Y=6.0438x+36.059	0.9628
	ZnO only		Y=5.331x+31.717	0.9726
	Mixture NPs	of	Y=4.352x+55.518	0.9322
lipid vs. CAT activity	CuO only		Y=0.0149x+0.3174	0.9613
i	ZnO only		Y=0.0157x+0.2432	0.9733
	Mixture NPs	of	Y=0.0143x+0.2523	0.9278
Carbohydrate vs. CAT activity	CuO only		Y=0.0665x+0.309	0.9688
	ZnO only		Y=0.0689x+0.4527	0.9569

Table C.7: Showing Equation and R values of different parameters with NPs concentration.

		Y=0.00483x+0.8031	0.9287
Protein vs. CAT	NPs CuO only	Y=0.1221x+1.8812	0.9763
Protein vs. CAT activity	CuO only	I-0.1221X+1.8812	0.9703
	ZnO only	Y=0.113x+1.5996	0.9784
	Mixture of	Y=0.0915x+2.0778	0.9405
	NPs		
Internal metal vs. CAT activity	CuO only	Y=2.674x+22.348	0.9761
	ZnO only	Y=2.6179x+26.639	0.99
	Mixture of NPs	Y=1.0446x+6.4977	0.9686

3.7. TEM

Figure C.7.1: TEM image showing algae in OECD media at t=0 hrs and t=96 hrs. in the presence of mixture of nanoparticles at 100:1 ratio for 100 mg/L nanoparticle concentration.

Figure C.7.2: TEM image showing algae-bacteria consortia in OECD media at t=0 hrs and t=96 hrs. in the presence of ZnO nanoparticles at 100:1 ratio for 100 mg/L nanoparticle concentration.

Figure C.7.3: TEM image showing algae-bacteria consortia in OECD media at t=0 hrs and t=96 hrs. in the presence of ZnO nanoparticles at 100:1 ratio for 100 mg/L nanoparticle concentration.

Figure C.7.4: TEM image showing bacteria at=0 hrs and t=96 hrs. in the presence of ZnO+CuO nanoparticles at 100:1 ratio for 100 mg/L nanoparticle concentration.

Figure C.7.5: HDD in the various samples containing algae+bacteria at different concentration (0, 0.1, 1, 10 and 100 mg/L) of ZnO, CuO and ZnO+CuO NPs in the OECD media at after 96 hours at different ratios. Error bars indicate one standard deviation value of three replicates around average values; *: significance (p < 0.05)

Figure C.7.6: HDD in the sample containing different concentrations of nanoparticles at algaebacteria ratio (1:1).

Figure C.7.7: HDD in the sample containing different concentrations of nanoparticles at algaebacteria ratio (1:100).

Figure C.7.8: HDD in the sample containing different concentrations of nanoparticles in bacteria alone.

Table C.8: Calculated values of rate constants of the kinetics of metal accumulation of algae-bacteria consortium after t=96 hours at 1 mg/L concentration (average and

Nanoparticles	Total adsorption (k _{total})	Coefficient of determination of
presence		model fitting (R ² total)
ZnO only	0.587±2.76	0.932
CuO only	0.619±2.86	0.956
Both types of		
NPs	0.449±1.93	0.939

standard deviation values are shown here).

Figure C.8.1: FTIR spectra in the sample containing no nanoparticles at algae-bacteria ratio (100:1).

Figure C.8.2: FTIR spectra in the sample containing 100 mg/L ZnO nanoparticles at algae-bacteria ratio (100:1).

Figure C.8.3: FTIR spectra in the sample containing 100 mg/L CuO nanoparticles at algae-bacteria ratio (100:1).

Figure C.8.4: FTIR spectra in the sample containing 100 mg/L CuO+ ZnO mixture of nanoparticles at algae-bacteria ratio (100:1).

 Table D.1: Shows the comparison table between the parameters analysed in the present study vs. various toxicity studies done in the past with mixture of NPs and algae alone. Shows the parameters which are analysed in the past.

MIXTURE OF NANOPARTICLES+ALGAE

Algal alone/Algae-	NPs	Chl a	Chl b	Carotenoid	Cell Growth/	Biomass	Lipid	Protein	Chemical	Metal	Microscopic	Mechanism	References
Bacterial Species					Cell Count				Bonding				
used													
Chlorella	ZnO,		No	No		No	No	No	No	No	No	No	Ko et al., 2018
vulgaris	CuO,												
	TiO ₂ ,												
	NiO,												
	Fe ₂ O ₃												
Scenedesmus	TiO ₂	No	No	No		No	No	No	No	No		No	Wang et al., 2020
obliquus,	NPs;												
Chlorella	TiO ₂												
vulgaris	NT												
Scenedesmus	ZnO,	No	No	No		No	No	No	No			No	Ye et al., 2018
obliquus	GO												

Chlorella sp.	TiO ₂	No			No	Iswarya et al.,							
	(rutile												2015
	and												
	anatas												
	e												
	phases												
)												
Chlamydomonas	AgNP	No			No	Huang et al., 2019							
<i>reinhardtii</i> and	s,												
Ochromonas	HemN												
danica	Ps,												
	PsNPs												
Scenedesmus	TiO ₂ ,				No	No	No	No	No	No		No	Liu et al., 2018
obliquus	ZrO ₂ ,												
	SiO ₂												
Chlorella	ENPs	No	No	No		No	Wang et al., 2016						
pyrenoidosa	(nCeO												

	₂ and										
	nTiO ₂)										
	, one										
	antibio										
	tic										
	(florfe										
	nicol,										
	FLO)										
Picochlorum sp.	ZnO	No	No	No	No	No	No		No	Hazeem	et al.,
	and									2015	
	TiO ₂										
	NPs										

BACTERIA+SINGLE/MIXTURE OF NANOPARTICLES

Bacteria alone	NPs	Cell Growth/	Biomass	Lipid	Protein	Chemical	Metal	Toxicity test	Enzyme	Microscopic	Mechanism	References
		Cell Count				Bonding			Assay			

Pseudomonas	AgNP		No	No	No	No	No			No	Dorobantu et al.,
aeruginosa											2015
Staphylococcus											
aureus											
Escherichia coli,	AgNP		No	No	No	No	No		No	No	Greulich et al.,
Staphylococcus											2012
aureus											
Shewanella	AuNP		No	No	No	No	No			No	Feng et al., 2015
oneidensis;											
Bacillus subtilis											
Escherichia coli,	ZnO		No	No	No	No	No	 		No	Premanathan et
Staphylococcus											al., 2010
aureus;											
Pseudomonas											
aeruginosa											
E. coli	CuO	No	No	No	No	No			No	No	Bondarenko et al.,

											2012
Pseudomonas	AgNP	No	No	No	No	No	No			No	Ivask et al., 2014
fluorescens OS8;											
E. coli;											
Saccharomyces											
cerevisiae											
BY4741											
Streptomyces	CuO		No	No	No	No				No	Liu et al., 2018
Staphylococcus	CuO		No	Dadi et al., 2019							
aureus;	and										
Escherichia coli;	ZnO										
Pseudomonas	alone										
aeruginosa											
Staphylococcus	CuO		No	No	No	No				No	Janani et al., 2020
aureus;											
Pseudomonas											
aeruginosa											

CuO	No	No	No	No	No					No	Meghana et al.,
											2015
CuO	No	No	No	No	No			No	No	No	Amiri et al., 2017
ZnO		No	No	No	No				No	No	Li et al., 2011
CeO ₂		No	No	No	No					No	Bandyopadhyay
and											et al., 2012
ZnO											
NPs											
alone											
ZnO	No	No	No	No	No			No	No	No	Zhang et al., 2020
and											
CuO											
NPs											
	CuO ZnO CeO ₂ and ZnO NPs alone ZnO and CuO	CuONoCuONoZnO-ZnO-And-ZnO-And-ZnO-And-ZnO-And-CuONoAnd-And	CuONoNoNoCuONoZnOIonCeO2NoandIonZnOIonAnoIonZnOIonCuONoIoneIonIoneIonIonNoIon<	CuONoNoCuONoNoAnoNoNoZnONoNoCeO2NoNoandIIZnOIIAnoIIAnoNoNoAnoIIAno	CuONoNoNoCuONoNoNoCuONoNoNoZnOIncomeNoNoCeO2NoNoNoandIncomeIncomeNoZnOIncomeIncomeIncomeAndoneIncomeIncomeIncomeAnoneIncomeIncomeIncomeAnoneIncomeNoNoAnoneIncomeIncomeIncomeAn	CuONoNoNoNoCuONoNoNoNoZnOImage: Signal Signa	CuONoNoNoNoNoCuONoNoNoNoNoNoNuNuNuNuNuNuNuZuONuNuNuNuNuNuCeO2NuNuNuNuNuNuandIuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	Image: Noise of the sector o	CuONoNoNoNoNoNoCuONoNoNoNoNoNoNoNuNuNuNuNuNuNuNuZuONuNuNuNuNuInternational StateCeO2NuNuNuNuNuInternational StateAundNuNuNuNuNuInternational StateAundInternational StateInternational StateInternational StateInternational StateNPsInternational StateInternational StateInternational StateInternational StateAundNuNuNuNuNuInternational StateAundInternational StateInternational StateInternational StateInternational State <td>CuONoNoNoNoNoNoNoCuONoNoNoNoNoNoNoNoZnONoNoNoNoNoIooIooNoCeO2NoNoNoNoIooIooNoAndNoNoNoNoIooIooIooAndNoNoNoIooIooIooIooAndNoNoNoIooIooIooIooNPsIooNoNoNoIooIooIooAnoNoNoNoNoIooIooIooAnoNoNoNoIooIooIooIooAnoNoNoNoNoIooIooIooAnoNoNoNoNoIooIooIooAnoNoNoNoIooIooIooIooAnoNoNoNoIooIooIooIooAnoNoNoNoIooIooIooIooAnoIooIooIooIooIooIooIooAnoIooIooIooIooIooIooIooAnoIooIooIooIooIooIooIooAnoIooIooIooIooIooIooIooAnoIooIooIooIooIooI</td> <td>Image: series of the series</td>	CuONoNoNoNoNoNoNoCuONoNoNoNoNoNoNoNoZnONoNoNoNoNoIooIooNoCeO2NoNoNoNoIooIooNoAndNoNoNoNoIooIooIooAndNoNoNoIooIooIooIooAndNoNoNoIooIooIooIooNPsIooNoNoNoIooIooIooAnoNoNoNoNoIooIooIooAnoNoNoNoIooIooIooIooAnoNoNoNoNoIooIooIooAnoNoNoNoNoIooIooIooAnoNoNoNoIooIooIooIooAnoNoNoNoIooIooIooIooAnoNoNoNoIooIooIooIooAnoIooIooIooIooIooIooIooAnoIooIooIooIooIooIooIooAnoIooIooIooIooIooIooIooAnoIooIooIooIooIooIooIooAnoIooIooIooIooIooI	Image: series of the series

	mix										
Escherichia coli	ZnO	No	No	No	No	No		No	No	No	Tong et al., 2015
	and										
	CuO										
	NPs										
	mix										
Nitrosomonas	n-		No	No	No	No				No	Yu et al., 2016
europaea	TiO2,										
	n-										
	CeO2,										
	and n-										
	ZnO										

ALGAE-BACTERIA CONSORTIA+SINGLE/MIXTURE OF NANOPARTICLES

Bacteria alone	NPs	Contaminant	Cell Growth/	Biomass	Lipid	Protein	Chemical	Metal	Toxicity test	Enzyme	Microscopic	Mechanism	References
			Cell Count				Bonding			Assay			
AgNP and	No	Antibiotic	No	No	No	No	No	No	No		No	No	Cao et al, 2023
HemNP tagged													
bacteria with													
Chlorella													
pyrenoidosa													
Bacillus sp. and	No	Heavy		No	No					No		No	Chandrashekharaiah
	110	metal		110	110					110			et al., 2022
Micrococcus sp													et al., 2022
(Bacteria) and.		$Pb^{2+}+Cd^{2+s}$											
Scenedesmus													
acutus and													
Chlorella													
pyrenoidosa													
Chlorella	No	Antibiotics		No	No	No	No	No	No		No	No	Zhou et al., 2023
		Annoiones							110				Ziiou et al., 2023
vulgaris and													

Bacillus subtilis												
Chlorella	No	Tetracyclin	No		No	Zhou et al., 2023						
vulgaris and		e										
Bacillus subtilis												

Reference	Algae/bacteria Information	Matrix	Findings	Parameters observed	Remarks/ Limitations
Han et al. (2016)	Bacteria: Muricauda sp. Axenic microalga: Tetraselmis chuii, Cylindrotheca fusiformis & Nannochloropsis gaditana	Wastewater	Microalgae-bacteria co-cultures effective strategy for microalgal cultivation under mixotrophic conditions. Algal cell density increases with bacteria.	Growth curve, algae- bacteria ratio, plating	No data on the Toxicity of NPs; Only growth studies done.
Berthold et al. (2019)	Algae: Characium sp. Bacteria: Pseudomonas composti	BG-11 media	bacteria release of unidentified extracellular compounds which might affect the growth rate and lipid metabolism of algae.	Biomass, Lipid, FAME, Molecular phylogenetic analyses	No data on toxicity of NPs; Mechanism unexplored.
Ferro et al. (2019)	algal strain: <i>Chlorella vulgaris</i> Bacteria <i>: Rhizobium sp</i> .	Synthetic Municipal Wastewater	Culture stability along with high nutrient removal capacity even at HRTs of 5 and 3 days	Biomass, Specific growth rate, O_2 , CO_2 , N_2 , Lipid, Protein, carbohydrate	No data of Toxicity of NPs.
Thøgersen et al. (2018)	Alga <i>Emiliania huxleyi</i> bacterium <i>Phaeobacter</i> inhibens DSM17395	Growth Media	The presence of the alga facilitated the attachment of the bacterium to a surface	DNA isolation, PCR, Fluorescence tagging	No data of Toxicity of NPs; Only growth study
Ashok et al. (2014)	Algal-bacterial consortia. Chlorella vulgaris. Chlamydomonas reinhardtii	Synthetic wastewater	Almost 90 % removal of Nitrogen and Phosphorus and 80% of COD (2-day HRT)	Temp., pH, chl a, biomass, nitrogen, phosphorus, polysaccharides, alkalinity.	condition optimum for OECD condition or mixture of NPs
Holmes et al. (2019)	Bacteria- Escherichia coli Algae- Auxenochlorella protothecoides	Simulated wastewater	In cocultures with algae, minimal or no acetate was observed; COD removal up to 66% faster than <i>E. coli</i> in co-culture.	Culture growth, qPCR, organic acid analysis	No data on toxicity of NPs; no consideration for mixture of NPs
Cao et al. (2019)	Algae: Isochrysis galbana Bacteria: Pseudomonas stutzeri	NMB3 media	Decrease in the chlorophyll contents by 23–74% in co-culture as compared with the axenic culture in the period of 6 days.	Growth, chl via fluorescence, DNA extraction, PCR,	No NPs toxicity; no information at cellular levels (EC_{50}, etc) .
Segev et al (2016)	Algae: <i>Emiliania huxleyi</i> Bacteria: <i>Phaeobacter</i> Inhibens	Growth media	Naked algal cells covered by bacteria attached via their poles; Over time more attachment of algae with bacteria in co-culture conditions	Growth profile, flow cytometry, fluorescence, SEM, chl a, cell analysis.	No toxicological studies on co-culture; no toxicity study due to NPs
Fie et al (2019)	Bacteria: <i>R. radiobacter</i> Algae: <i>C. variabilis</i> .	Growth media	<i>R. radiobacter</i> -derived nitrogen stimulates fatty- acid oxidation in <i>C. variabilis</i> and promotes its growth	Growth profile, nitrogen, carbon, FAMEs.	No toxicity studies; no consideration for OECD conditions

Lepine et al. (2018)	Chlorella spp.	Industrial wastewater	A microalgae-bacteria consortium was grown in a mixture of industrial wastewater.	Cell count, pH, growth, Lipid, FAME,	No NPs-related study	toxicity
Grover et al. (2020)	C. vulgaris with Nitrobacter	Growth media	Co-culturing enhanced growth (w/ increased cellular composition and biomass content)	Growth profile, cell count. biomass	No NPs-related study	toxicity
Contreras- Angulo et al. (2019)	Co-culture of Azospirillum brasilense and Scenedesmus sp.	Growth media	Symbiotic co-culturing of microalgae-bacteria on nitrogen-deficient media enhancing microalgae size and biomass biofuels.	Biomass, cell size, protein carbohydrate, fatty acids, nitrogen	No NPs-related study	toxicity
Zhou et al, (2020)	Chlorella pyrenoidosa; Bacteria: High-efficient ammonia-oxidizing strain FN5	Antibiotic containing Wastewater	FN5 enhanced biomass concentration and lipid content of microalga <i>Chlorella pyrenoidosa;</i> <i>Chlorella pyrenoidosa-FN5</i> culture removed NH ₃ – N and accumulated lipid	Enzyme activity (SOD, MDA, CAT), SEM, EPS, IAA, Nitrogen removal, Phosphate, COD removal	No NPs-related study	toxicity
Verma et al, (2020)	Algae: Chlorella sp. Activated sludge	Lakewater	Removals of 93% nitrates, 99% phosphates, and 73% COD; maximum biomass content =7.8g/L	Microalgal growth, biomass, SEM, COD, FTIR, nutrient removal	No NP-related studies	toxicity
Xie et al. (2020)	Microalgal strain C. sacchrarophila bacterium C. pealriver	Growth media	<i>Chlorella sacchrarophila</i> was grown in bioreactor while a xylanolytic bacterium <i>Cellvibrio pealriver;</i> During the CTS strategy, the co-cultivation using xylan as feedstock	Microbial growth, SEM, total nitrogen concentration, lipid.	No NPs-related study	toxicity
Xu et al. (2021)	C. vulgaris, S. obliquus, Spirulina platensis Aerobic activated sludge	Raw municipal wastewater	Nutrient removal was increased; season- dependent nutrient removal; Aeration helps in the removal efficiency.	Wastewater characteristics, biomass, pH, DO, N, P, plate count, TSS, Growth kinetics.	No NPs-related study	toxicity
Loria et al. (2021)	C. vulgaris, C. sorokiniana, S. dimorphus, Neochloris oleoabundans; Activated sludge (AS)	Growth media, sludge	Several microalgal taxa bio flocculated with AS within 2 h; P removal was inconsistent in <i>C. vulgaris</i> and <i>N. oleoabundans</i> reactors, but stable and high in <i>S. dimorphus</i> in SBR reactors, though S. dimorphus reactors also exhibited the poorest settleability	Biomass, lipid, TSS, growth profile, nitrogen, phosphorous, DO	No NPs-related study	toxicity
Huo et al. (2020)	Algae Chlorella sp. Bacteria: Bacillus firmus and Beijerinckia fluminensis	Vinegar production Wastewater	Nutrient removal rates were significantly increased after adding bacteria cultures; <i>B. fluminensis</i> enhanced the pigment content of <i>Chlorella sp.</i> ; Co- culturing had more notable effect on fatty acid composition rather than oil content.	TN, TFA, Cell count, TN, TP, COD, Lipid, Fatty acid	No NPs-related study	toxicity

Mujtaba et al. (2017)	microalga Chlorella vulgaris; bacterium Pseudomonas putida.	Municipal wastewater	higher removal of both nutrients and COD in coculture than each axenic culture; the best removal performance with suspended <i>P. putida</i> and immobilized <i>C. vulgaris</i>	TP, TN, COD, TOC, TSS, Cell growth, wastewater characterization	No NPs-related toxicity study
Xu et al. (2021 b)	Chlorella vulgaris, Scenedesmus obliquus, Spirulina platensis	Municipal wastewater	In the summer & autumn seasons high removal rates and biomass production percentages, the highest specific growth rate was 0.46 d–1; the highest TN removal rate was 2.34 d ⁻¹ ; and the highest TSS removal efficiency was $96.3 \pm 2.1\%$.	Biomass, plate count, COD, pH, DO, TP, TN, nutrient removal kinetics, growth kinetics	No NPs-related study
Xu et al, (2021 a)	Algae: Chlorella vulgaris Bacteria: Bacillus.	Growth media	Two bacterial strains of different genera were isolated from <i>Chlorella vulgaris;</i> Bacillus strain improved algae growth, photosynthesis, and nutrient removal; 7-day optimal co-culturing conditions with 10:1 bacteria-to-microalgae ratio	Biomass, cell count. Nutrient removal, growth kinetics, chl a	No NPs-related toxicity study
Tao et al. (2020)	Chlorella sp. and Bacillus simplex	Growth media	Consortium improved phenol degradation efficiency and <i>Chlorella sp.</i> Growth	Cell count, growth kinetics, phenol degradation	No NPs-related toxicity study
Li et al. (2021)	Scenedesmus obliquus and Bacillus megaterium		Co-culture was found more efficient in treating high- concentration biogas slurry compared with the pure microalgae culture, reducing various nutrients in biogas slurry and simultaneously accumulating biomass with higher biofuel characteristics.	Biomass, cell growth, chl a, chl b, lipid, TP, TN, COD, etc.	No NPs-related toxicity studies
Wang et al. (2021)	Monoculture and co-culture of algae (Chlorella vulgaris) and bacteria (activated sludge)	Swine manure	When co-cultivated, the algal growth and precipitation (harvest) were promoted, while aerobic bacteria growth was initially promoted, and then inhibited.	Biomass, pH, TN, COD, DO, cell count, SEM, DNA, Biomass settling efficiency	NPs toxicity was not studied.
Wang et al., 2022	Algae-bacteria consortia (ABC) in activated sludge	Cooking wastewater	ABC reactors show satisfactory removal ability. ABC can secrete large EPS to protect themselves and form flocs with good sedimentation performance under toxic and refractory organic wastewater stress.	COD, TN, pH, SS, biomass, EPS, BOD, chl a	NPs toxicity not discussed
Rossi et al., 2022	<u>Chlorellaceae</u> $(1\cdot10^{6} \text{ cell}\cdot\text{mL}^{-1})$, Scenedesmaceae $(0.2\cdot10^{6} \text{ cell}\cdot\text{mL}^{-1})$, and Chlamydomonadaceae $(0.2\cdot10^{6} \text{ cell}\cdot\text{mL}^{-1})$; bacterial culture: heterotrophs and nitrifiers.	Piggery wastewater	Removal of NH_4^+ , PO_4^{3-} (90%), and COD (59%), with 10.7 g/m ² /d biomass productivity. The process allowed to reduce the nitrogen spread to arable land by 77%, by increasing the nitrogen valorised as biofertilizers/ bio stimulants and the nitrogen released to the atmosphere.	TSS, TAN, COD, Biomass, chl a, FDA, SEM.	NPs were not present in this study.
Xu et al., 2023	Cladophora, activated sludge	Wastewater	The addition of microorganisms increases the	DO, biomass, TN, TP,	NPs not studied.

bsent.
ſ
d in this
ſ
ſ
ſ
ſ
d