Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Biofilters and bioretention systems: The role of biochar in blue green city concept for stormwater management

K.S.D. Premarathna¹, Jayanta Kumar Biswas², Manish Kumar³, Sunita Varjani⁴, Bede Mickan⁵, Pau

Loke Show⁶, John Lau Sie Yon⁷, Luís A. B. Novo⁸, Meththika Vithanage^{1,3,5*}

¹Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

²Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech

Lab), Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia- 741235, West Bengal, India

³Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India

⁴Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India

⁵The UWA Institute of Agriculture, University of Western Australia, Perth WA6009, Australia

⁶Department of Chemical and Environmental Engineering, University of Nottingham, 43500 Semenvih, Selangor Darul Ehsan, Malaysia

⁷Department of Chemical and Energy Engineering, Curtin University, 98009 Miri Sarawak, Malaysia

⁸ Scotland's Rural College (SRUC), West Mains Road, The King's Buildings, EH9 3JG Edinburgh, United Kingdom

*Corresponding Author: meththika@sjp.ac.lk

Table S1: Summary of usage of pristine biochar for the removal of contaminants from stormwater

Feedstock	Temperature/ °C	Target	Observations	Inference	Reference
		contaminant			
Wood	900 - 1000	Total ammonia	After 4 days of recirculation TAN	Higher CEC and specific surface area	Rahman et al. ¹
		nitrogen (TAN),	concentration in effluents from sand,		
		NO ₃ ⁻ -N and NO ₂ ⁻ -N	biochar (900 -1000 °C), and biochar (550		
		, dissolved organic	°C) reduced by 48%, 65%, and 67%		
		carbon (DOC), E.	respectively	Nitrification in each column and the	
		coli	After 4 days of recirculation NO_x	simultaneous nitrification-	
			concentration in effluents of sand, biochar	denitrification occurring in biochar	
			(900 -1000 °C), and biochar (550 °C)	(550 °C) amended columns	
			increased by 261%, 253%, and 84%		
	550	-	respectively	High surface area of biochar	
			E coli concentration in effluents from		
			biochar (900 $-$ 1000 °C) is below the		
			detection limit and it is higher in biochar		
			(550°C) than that of sand		
Pine wood (PW)	-	TorC	TorCs removal of all biochar amended	Small particle size of biochar provide	Ulrich et al. ²
			columns more than 99% (Effluent	more surface area for adsorption of	
			concentration less than 0.1 μ g/l)	TorC	

Wood dust	300, 500, 700	BPA	Fixed bed columns containing biochar	High surface area and pore volume of	Lu and Chen ³
			produced at 700 °C removed BPA more	biochar	
			efficiently than biochar non amended		
			columns and other biochar amended		
			columns		
			Adsorption efficiency decreased at high	Humic acid compete with BPA for	
			humic acid concentrations	pores and block biochar' pores and	
				reduce number of effective sites	
				available for BPA to bind	
			Highest adsorption observed at neutral pH	At high pH's promote dissociation of	
				carboxylic groups in biochar surface	
				and dissociate carboxyl groups in BPA	
				and make it hydrophilic so hydrophobic	
				interactions reduced	
Reef soil	550	$P, NH_4-N, NO_3-N,$	Peak flow rate and cumulative runoff	High water retention ability of biochar	Imhoff et al. ⁴
		total nitrogen (TN_{b})	volume decreased in biochar amended		
			strips		
			No significant difference in concentrations		
			of any pollutant (P, NH ₄ -N, NO ₃ -N or TN_b)		
			in surface water samples from biochar		
PW			amended and un-amended		
PW	-				

			Only NO ₃ -N or TN _b concentrations of		
			subsurface water was lower in samples		
			below the biochar amended soil		
Softwood with bark	815 - 1315	E. coli	In all the biochar amended columns	Overall increase of attraction forces	Mohanty and Boehm ⁵
			removal of E. coli was higher than the sand	(hydrophobic and steric interactions)	
			only column		
			Remobilization of deposited E. Coli during	Rough surface and irregular shape of	
			intermittent flow was lower in biochar	biochar promote bacterial attachment	
			amended columns	via straining	
Wood chips	350	E. coli	Removal efficiency 3 times higher than	Overall increase of attachment sites	Mohanty et al. ⁶
(commercially			sand	Increase of overall attractive forces	
available)				between bacteria surface and grain	
				surface	
			Reduced the mobilization during the	Hydrophobic forces increased water	
-	700		intermittent flow	holding capacity or decreased intrusion	
				of air during gravitational drainage	
A blended mix of	180 – 395	E. coli	Biochar-modified sand biofilters show	Higher specific surface area, surface	Afrooz and Boehm ⁷
wood species			enhanced E. coli removal compared to sand	roughness and hydrophobicity of	
60% Monterey Pine,			under all experimental conditions	biochar	
20% Eucalyptus,			Retention of P. aeruginosa by biochar-		

10% Bay Laurel,			amended sand column is higher than the		
10% mixed hardwood			pure sand columns		
and softwood			Injecting E. coli loaded stormwater to the	Contribution of ATP from E. coli	
			biofilm-coated biochar-amended sand	retention is insignificant compared to	
			columns not showed observable ATP	the ATP from the P. aeruginosa	
			densities in the columns	biofilm	
Silvergrass	-	P, E. coli	Average removal of E. coli by biochar	The increased biological activity and	Kaetzl et al. ⁸
(Miscanthus sp.)			amended columns higher than that of sand	the additional degradation at the deeper	
			column and increased with the experiment	zones of filter	
			time		
			Removal of P higher in biochar amended	High adsorption capacity of biochar	
			columns than that of sand columns	due to porous structure	
A blended mix of	394	E. coli	Biochar-amended biofilters showed	High organic carbon content promotes	Kranner et al. ⁹
wood species			enhancement in E. coli removal during the	hydrophobic interactions between	
60% Monterey Pine,			first 31 weeks of conditioning over sand	bacteria and biochar surface	
20% Eucalyptus,			biofilters and media type did not influence	Provide additional attachment sites to	
10% Bay Laurel,			E. coli removal during the last 30 weeks of	bacteria and virus due to its high	
10% mixed hardwood			conditioning	surface area	
and softwood					
Bamboo chips	600	NH ₄ ⁺ -N, NO ₃ N,	Removal of large molecule organic	Presence of considerable number of	Pan et al. ¹⁰
		NO_2 -N or TN	contaminants increased with the addition of	surface functional groups and large	

			biochar	surface area of biochar	
			Biochar amended biofilters increased the	Good pore structure provide adequate	
			removal efficiencies of $\rm NH_4^+$ - N, TN, $\rm NO_2^-$	surface area for the growth and	
			Ν	reproduction of microorganisms and	
				enhance the number of denitrifying	
				microorganisms	
				Biochar act as a supplementary carbon	
				source for microorganisms involved in	
				denitrification	
			NO ₃ ⁻ -N was accumulated in the effluent	High concentration of dissolved	
				oxygen due to addition of biochar	
				provided aerobic environment to	
				facilitate the growth of nitrifying	
				bacteria who enhanced the conversion	
				of NO ₂ ⁻ -N to NO ₃ ⁻ -N	
Wood chips	700 - 1000	Dissolved organic	Column contained the highest amount of	Increase of surface charge availability	Rahman et al. ¹¹
		nitrogen (DON),	biochar (BC-50%) showed higher TAN	for adsorption $\mathrm{NH}_4{}^{\scriptscriptstyle +}$ due to the high	
		TAN, NO _x	removal efficiency than column with low	amount of biochar in the column, Ca^{2+} ,	
			biochar amount (BC-20%)	Mg^{2+} , Al^{3+} , Fe^{2+} available in the dairy	
				runoff compete with NH_4^+ for	
				adsorption sites of BC-20%	

				Greater ammonification and	
			Higher DON removal by BC-50% than BC-	nitrification-denitrification due to high	
			20%	adsorption capacity	
				Enhanced adsorption, ammonification,	
			Greater TN adsorption by BC-50% than	nitrification and denitrification	
			BC-20%		
Poultry litter (PL)	300, 400, 500	$\mathrm{NH_4^+}$ - N	Water retention capacity of PL-300 and	Additional pour volume of biochar	Tian et al. ¹²
			SYP biochar is high relative to sand filter		
			$\rm NH_4{^+}$ - N adsorption capacity of PL-400 and		
<u> </u>			PL-500 is higher than that of SYP biochar	High CEC of PL biochar	
Southern yellow pine	550				
(SYP)					
PL	400, 500	$\mathrm{NH_4^+}$	PL biochar adsorbed more NH_4^+ than that	High CEC of biochar produced at low	Tian et al. ¹³
			of HW biochar	pyrolysis temperatures	
			PL-400 biochar sorbed more NH_4^+ than the		
			PL-500 biochar		
			Column with 10% biochar removed more		
Hardwood pellets			than 90% of $\mathrm{NH_{4^+}}$ than the sand only		
(HW)			column		
			Cation exchange is the dominated		
			adsorption mechanism		

PW	>1100	TorCs	TorC adsorption capacity of sand columns	High surface area and pore volume	Ulrich et al. ¹⁴
			amended with PW-1100 biochar higher		
	>600	-	than that of PW-600 biochar		
Spent coffee ground	400	Caffeine (CAF),	SCG adsorbed $15 - 25$ % of CAF, ATR,		Redden ¹⁵
(SCG)		Atrazine (ATR),	and PCP and $60-90~\%$ of DIU and FIP		
		Diuron(DIU),	The removal efficiencies TOrCs decreased		
		Fipronil (FIP),	when exposed to mixed contaminants,	The competition between multiple	
		Pentachlorophenol	except the highly hydrophobic TOrC.	contaminants for binding sites reduce	
		(PCP)		the removal efficiency	
Wood waste	700	Cu, Cd, Zn, Ni	Overall removal efficiency of metals	High BET surface area and pore	Sun et al. ¹⁶
			Cu - 80 - 100%	volume facilitated adsorption	
			Cd - 41.1 - 100%	The pH of outflow was slightly higher	
			Ni - 44.4 - 84%	than the stormwater which reduce	
			Zn - 51.6 - 100%	solubility of metals and enhance	
				removal efficiency	

Feedstock	Modifier	Temperature/ °C	Target	Observations	Inference	Reference
			contaminant			
Forestry wood waste	H_2SO_4	700	E. coli	Removal percentage of E Coli by raw	High surface area, porous structure	Lau et al. 17
				biochar was 96.6% and H_2SO_4	and, surface characteristics of the	
				modification exceeded the removal	biochar	
	H ₃ PO ₄	-		efficiency of raw biochar slightly and		
				minimized remobilization of bacteria	High surface hydrophobicity of	
				H ₃ PO ₄ and KOH modification has little	biochar	
				influence on removal efficiency of E_coli	Due to presence of more oxvgen	

Table S2: Summary of usage of modified biochar for the removal of contaminants from stormwater

	КОН			E. coli removal efficiency of amino	containing functional groups surface	
				modified biochar was 92.1% lower than	become polar and prevent	
				other biochar yet higher than the sand only	hydrophobic bacteria	
	Amino			column		
PW	nZVI	600	As, Cd, Cu, Pb,	As, Cd, Cu, Pb and Zn removal efficiency	High surface area provide more sites	Hasan et al.
			Zn	of homogeneous mixture of biochar 95%,	for adsorption of Cu	18
				93%, 99%, 98% and 95% respectively	Complexation with active surface	
				As, Cd, Cu, Pb and Zn removal efficiency	functional groups, cation exchange	
				of biochar layered sand 96%, 99%, 100%,	and precipitation	
				100% and 99% respectively	As adsorption via surface	
				As, Cd, Cu, Pb and Zn removal efficiency	complexation with hydroxide	
				of nZVI modified biochar layered sand	groups and intraparticle diffusion	
				98%, 90%, 99%, 99% and 94%	onto nZVI biochar complexes	
				respectively	Cd adsorption by biochar mainly via	
					cation exchange, surface	
					complexation, precipitation and	
					electrostatic interactions	
PW	nZVI	600	Cu, Cd	Percentage removal of Cu by sand, sand-	Metals interacted with biochar via	Hasan et al.

				biochar and sand-nZVI biochar was over	chemical reduction and surface	19
				99%	complexation with functional	
				Percentage removal of Cd and Zn by sand-	groups of biochar and the iron oxide	
				nZVI biochar was significantly high	C-O and COOH groups on biochar	
				compared to pure sand column and raw	transformed to C-O-Fe producing	
				biochar amended columns.	adsorption sites for metals	
Wood waste	700	H_2SO_4	Cu, Cd, Zn, Ni	Only effective for Cu removal, efficiencies	Increased BET surface area and total	Sun et al. ¹⁶
				were 67.9 -97.9% and $99.6 - 100\%$	pore volume due to H_2SO_4	
					modification	
					Low pH of outflow reduce removal	
					efficiency of metals	
Oak trees	285	Al	As	Adsorption capacity of As by Al	Available adsorption sites for As	Liu et al. ²⁰
				impregnated biochar was significantly	increased with the increase of Al	
				higher than that of pristine biochar.	content	
				Adsorption of As increased with the	As adsorption occurred via	
				increase of impregnated amount of Al	interactions between Al(OH)3 on	
					biochar surface and arsenate in	
					water.	
					Main mechanisms involved are	
					electrostatic attractions and ligand	
					exchange	

SCG	400	КОН	CAF, ATR,	Removed all contaminants present in the	High surface area, high porosity, and Redden ¹⁵
			PCP, DIU, and	individual contaminant matrix	strong surface charge improve the
			FIP	Removed all TOrCs completely without	adsorption of TOrCs
				exhibiting any preference for highly	
				hydrophobic in the mixed contaminant	
				matrix	

References

- M. Y. A. Rahman, M. H. Nachabe and S. J. Ergas, *Bioresource Technology*, 2020, **310**, 123428.
- B. A. Ulrich, M. Loehnert and C. P. Higgins, *Environmental Science: Water Research & Technology*, 2017, 3, 726-734.
- 3. L. Lu and B. Chen, *Environmental Pollution*, 2018, **243**, 1539-1549.
- 4. P. T. Imhoff, Culver, T. B. & Chiu, P. C., *Removing Nitrate from Stormwater with Biochar Amendment to Roadway Soils*, 2019.
- S. K. Mohanty and A. B. Boehm, *Environmental Science & Technology*, 2014, 48, 11535-11542.
- S. K. Mohanty, K. B. Cantrell, K. L. Nelson and A. B. Boehm, *Water research*, 2014, 61, 288-296.
- 7. A. R. M. N. Afrooz and A. B. Boehm, *PLoS One*, 2016, **11**, e0167489.
- K. Kaetzl, M. Lübken, E. Nettmann, S. Krimmler and M. Wichern, *Scientific Reports*, 2020, 10, 1229.
- B. P. Kranner, A. Afrooz, N. J. M. Fitzgerald and A. B. Boehm, *PLoS One*, 2019, 14, e0222719.
- X. Pan, M. Chen, F. Wang and Q. Li, *Waste Management & Research*, 2020, **38**, 1176 –
 1184.
- M. Y. A. Rahman, R. Cooper, N. Truong, S. J. Ergas and M. H. Nachabe, *Chemosphere*, 2021, **283**, 130978.
- J. Tian, S. Yi, P. T. Imhoff, P. C. Chiu, M.-X. Guo, J. A. Maresca, V. M. Beneski and S. H. Cooksey, presented in part at the World Environmental and Water Resources Congress 2014.
- 13. J. Tian, V. Miller, P. Chiu, J. Maresca, M. Guo and P. Imhoff, *The Science of the total environment*, 2016, **553**, 596-606.

- B. A. Ulrich, E. A. Im, D. Werner and C. P. Higgins, *Environmental Science & Technology*, 2015, 49, 6222-6230.
- 15. N. Redden, Master of Science in Civil Engineering, University of Washington, 2021.
- Y. Sun, S. S. Chen, A. Y. T. Lau, D. C. W. Tsang, S. K. Mohanty, A. Bhatnagar, J. Rinklebe,
 K.-Y. A. Lin and Y. S. Ok, *Journal of Hazardous Materials*, 2020, 383, 121243.
- A. Y. T. Lau, D. C. W. Tsang, N. J. D. Graham, Y. S. Ok, X. Yang and X.-d. Li, Chemosphere, 2017, 169, 89-98.
- 18. M. S. Hasan, R. Vasquez and M. Geza, *Processes*, 2021, 9, 860.
- M. S. Hasan, M. Geza, R. Vasquez, G. Chilkoor and V. Gadhamshetty, *Water, Air, & Soil Pollution*, 2020, 231, 220.
- Q. Liu, L. Wu, M. Gorring and Y. Deng, *Journal of Environmental Engineering*, 2019, 145, 04019008.